Learning Differentiable Surrogate Losses for Structured Prediction
- URL: http://arxiv.org/abs/2411.11682v1
- Date: Mon, 18 Nov 2024 16:07:47 GMT
- Title: Learning Differentiable Surrogate Losses for Structured Prediction
- Authors: Junjie Yang, Matthieu Labeau, Florence d'Alché-Buc,
- Abstract summary: We introduce a novel framework in which a structured loss function, parameterized by neural networks, is learned directly from output training data.
As a result, the differentiable loss not only enables the learning of neural networks due to the finite dimension of the surrogate space but also allows for the prediction of new structures of the output data.
- Score: 23.15754467559003
- License:
- Abstract: Structured prediction involves learning to predict complex structures rather than simple scalar values. The main challenge arises from the non-Euclidean nature of the output space, which generally requires relaxing the problem formulation. Surrogate methods build on kernel-induced losses or more generally, loss functions admitting an Implicit Loss Embedding, and convert the original problem into a regression task followed by a decoding step. However, designing effective losses for objects with complex structures presents significant challenges and often requires domain-specific expertise. In this work, we introduce a novel framework in which a structured loss function, parameterized by neural networks, is learned directly from output training data through Contrastive Learning, prior to addressing the supervised surrogate regression problem. As a result, the differentiable loss not only enables the learning of neural networks due to the finite dimension of the surrogate space but also allows for the prediction of new structures of the output data via a decoding strategy based on gradient descent. Numerical experiments on supervised graph prediction problems show that our approach achieves similar or even better performance than methods based on a pre-defined kernel.
Related papers
- Deep Sketched Output Kernel Regression for Structured Prediction [21.93695380726788]
kernel-induced losses provide a principled way to define structured output prediction tasks.
We tackle the question of how to train neural networks to solve structured output prediction tasks.
arXiv Detail & Related papers (2024-06-13T15:56:55Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Regularization, early-stopping and dreaming: a Hopfield-like setup to
address generalization and overfitting [0.0]
We look for optimal network parameters by applying a gradient descent over a regularized loss function.
Within this framework, the optimal neuron-interaction matrices correspond to Hebbian kernels revised by a reiterated unlearning protocol.
arXiv Detail & Related papers (2023-08-01T15:04:30Z) - Transformer Meets Boundary Value Inverse Problems [4.165221477234755]
Transformer-based deep direct sampling method is proposed for solving a class of boundary value inverse problem.
A real-time reconstruction is achieved by evaluating the learned inverse operator between carefully designed data and reconstructed images.
arXiv Detail & Related papers (2022-09-29T17:45:25Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
Predictive coding is an influential theory of cortical function which posits that the principal computation the brain performs is the minimization of prediction errors.
Standard implementations of the algorithm still involve potentially neurally implausible features such as identical forward and backward weights, backward nonlinear derivatives, and 1-1 error unit connectivity.
In this paper, we show that these features are not integral to the algorithm and can be removed either directly or through learning additional sets of parameters with Hebbian update rules without noticeable harm to learning performance.
arXiv Detail & Related papers (2020-10-02T15:21:37Z) - Learning Output Embeddings in Structured Prediction [73.99064151691597]
A powerful and flexible approach to structured prediction consists in embedding the structured objects to be predicted into a feature space of possibly infinite dimension.
A prediction in the original space is computed by solving a pre-image problem.
In this work, we propose to jointly learn a finite approximation of the output embedding and the regression function into the new feature space.
arXiv Detail & Related papers (2020-07-29T09:32:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.