REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space
- URL: http://arxiv.org/abs/2406.09325v3
- Date: Sun, 16 Feb 2025 17:12:42 GMT
- Title: REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space
- Authors: Tomer Ashuach, Martin Tutek, Yonatan Belinkov,
- Abstract summary: Language models (LMs) risk inadvertently memorizing and divulging sensitive or personally identifiable information (PII) seen in training data, causing privacy concerns.
We propose REVS, a novel non-gradient-based method for unlearning sensitive information from LMs.
- Score: 35.61862064581971
- License:
- Abstract: Language models (LMs) risk inadvertently memorizing and divulging sensitive or personally identifiable information (PII) seen in training data, causing privacy concerns. Current approaches to address this issue involve costly dataset scrubbing, or model filtering through unlearning and model editing, which can be bypassed through extraction attacks. We propose REVS, a novel non-gradient-based method for unlearning sensitive information from LMs. REVS identifies and modifies a small subset of neurons relevant for constituent tokens that form sensitive information. To adequately evaluate our method on truly sensitive information, we curate three datasets: email and URL datasets naturally memorized by the models, and a synthetic social security number dataset that we tune the models to memorize. Compared to other methods, REVS demonstrates superior performance in unlearning sensitive information and robustness to extraction attacks, while retaining underlying model integrity.
Related papers
- Improved Localized Machine Unlearning Through the Lens of Memorization [23.30800397324838]
We study localized unlearning, where the unlearning algorithm operates on a small subset of parameters.
We propose an improved localization strategy that yields strong results when paired with existing unlearning algorithms.
We also propose a new unlearning algorithm, Deletion by Example localization (DEL), that resets the parameters deemed-to-be most critical.
arXiv Detail & Related papers (2024-12-03T12:57:08Z) - Extracting Unlearned Information from LLMs with Activation Steering [46.16882599881247]
Unlearning has emerged as a solution to remove sensitive knowledge from models after training.
We propose activation steering as a method for exact information retrieval from unlearned models.
Our results demonstrate that exact information retrieval from unlearned models is possible, highlighting a severe vulnerability of current unlearning techniques.
arXiv Detail & Related papers (2024-11-04T21:42:56Z) - CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
We propose a novel amortized unlearning approach using codebook features and Sparse Autoencoders (SAEs)
By leveraging a bottleneck to decompose the activation space and regulate information flow, our method efficiently unlearns targeted information while preserving the model's performance on unrelated data.
arXiv Detail & Related papers (2024-10-08T10:26:22Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying [10.919336198760808]
We introduce a novel methodology to detect leaked data that are used to train classification models.
textscLDSS involves injecting a small volume of synthetic data--characterized by local shifts in class distribution--into the owner's dataset.
This enables the effective identification of models trained on leaked data through model querying alone.
arXiv Detail & Related papers (2023-10-06T10:36:28Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
We reconstruct the training samples from a single gradient query at a randomly chosen parameter value.
As a provable attack that reveals sensitive training data, our findings suggest potential severe threats to privacy.
arXiv Detail & Related papers (2022-12-07T15:32:22Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.