Instance-level quantitative saliency in multiple sclerosis lesion segmentation
- URL: http://arxiv.org/abs/2406.09335v2
- Date: Tue, 25 Jun 2024 13:47:06 GMT
- Title: Instance-level quantitative saliency in multiple sclerosis lesion segmentation
- Authors: Federico Spagnolo, Nataliia Molchanova, Roger Schaer, Meritxell Bach Cuadra, Mario Ocampo Pineda, Lester Melie-Garcia, Cristina Granziera, Vincent Andrearczyk, Adrien Depeursinge,
- Abstract summary: We propose two instance-level explanation maps for semantic segmentation based on SmoothGrad and Grad-CAM++ methods.
Then, we investigated their relevance for the detection and segmentation of white matter lesions (WML) in multiple sclerosis (MS)
Data were randomly split into training, validation and test sets to train a 3D U-Net for MS lesion segmentation.
- Score: 1.3504571547122364
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, explainable methods for artificial intelligence (XAI) have tried to reveal and describe models' decision mechanisms in the case of classification tasks. However, XAI for semantic segmentation and in particular for single instances has been little studied to date. Understanding the process underlying automatic segmentation of single instances is crucial to reveal what information was used to detect and segment a given object of interest. In this study, we proposed two instance-level explanation maps for semantic segmentation based on SmoothGrad and Grad-CAM++ methods. Then, we investigated their relevance for the detection and segmentation of white matter lesions (WML), a magnetic resonance imaging (MRI) biomarker in multiple sclerosis (MS). 687 patients diagnosed with MS for a total of 4043 FLAIR and MPRAGE MRI scans were collected at the University Hospital of Basel, Switzerland. Data were randomly split into training, validation and test sets to train a 3D U-Net for MS lesion segmentation. We observed 3050 true positive (TP), 1818 false positive (FP), and 789 false negative (FN) cases. We generated instance-level explanation maps for semantic segmentation, by developing two XAI methods based on SmoothGrad and Grad-CAM++. We investigated: 1) the distribution of gradients in saliency maps with respect to both input MRI sequences; 2) the model's response in the case of synthetic lesions; 3) the amount of perilesional tissue needed by the model to segment a lesion. Saliency maps (based on SmoothGrad) in FLAIR showed positive values inside a lesion and negative in its neighborhood. Peak values of saliency maps generated for these four groups of volumes presented distributions that differ significantly from one another, suggesting a quantitative nature of the proposed saliency. Contextual information of 7mm around the lesion border was required for their segmentation.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - Exploiting XAI maps to improve MS lesion segmentation and detection in MRI [1.024819169163989]
We explore the use of characteristics of lesion-specific saliency maps to refine segmentation and detection scores.
93 radiomic features extracted from the first set of maps were used to train a logistic regression model.
On the test set, F1 score and PPV were improved by a large margin when compared to the initial model.
arXiv Detail & Related papers (2024-08-21T07:49:01Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
Multiple Sclerosis (MS) is an autoimmune, and demyelinating disease that leads to lesions in the central nervous system.
Up to now a multitude of multimodality automatic biomedical approaches is used to segment lesions.
Authors propose a method employing just one modality (FLAIR image) to segment MS lesions accurately.
arXiv Detail & Related papers (2022-01-05T21:37:43Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Dopamine Transporter SPECT Image Classification for Neurodegenerative
Parkinsonism via Diffusion Maps and Machine Learning Classifiers [0.0]
This study aims to provide an automatic and robust method to classify the SPECT images into two types, namely Normal and Abnormal DaT-SPECT image groups.
The 3D images of N patients are mapped to an N by N pairwise distance matrix and training set are embedded into a low-dimensional space by using diffusion maps.
The feasibility of the method is demonstrated via Parkinsonism Progression Markers Initiative (PPMI) dataset of 1097 subjects and a clinical cohort from Kaohsiung Chang Gung Memorial Hospital (KCGMH-TW) of 630 patients.
arXiv Detail & Related papers (2021-04-06T06:30:15Z) - Semantic Segmentation of Histopathological Slides for the Classification
of Cutaneous Lymphoma and Eczema [4.4154284772781525]
Mycosis fungoides (MF) is a rare, potentially life threatening skin disease.
We introduce a deep learning aided diagnostics tool that brings a two-fold value to the decision process of pathologists.
arXiv Detail & Related papers (2020-09-10T13:49:38Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.