Exploiting XAI maps to improve MS lesion segmentation and detection in MRI
- URL: http://arxiv.org/abs/2409.03772v1
- Date: Wed, 21 Aug 2024 07:49:01 GMT
- Title: Exploiting XAI maps to improve MS lesion segmentation and detection in MRI
- Authors: Federico Spagnolo, Nataliia Molchanova, Mario Ocampo Pineda, Lester Melie-Garcia, Meritxell Bach Cuadra, Cristina Granziera, Vincent Andrearczyk, Adrien Depeursinge,
- Abstract summary: We explore the use of characteristics of lesion-specific saliency maps to refine segmentation and detection scores.
93 radiomic features extracted from the first set of maps were used to train a logistic regression model.
On the test set, F1 score and PPV were improved by a large margin when compared to the initial model.
- Score: 1.024819169163989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To date, several methods have been developed to explain deep learning algorithms for classification tasks. Recently, an adaptation of two of such methods has been proposed to generate instance-level explainable maps in a semantic segmentation scenario, such as multiple sclerosis (MS) lesion segmentation. In the mentioned work, a 3D U-Net was trained and tested for MS lesion segmentation, yielding an F1 score of 0.7006, and a positive predictive value (PPV) of 0.6265. The distribution of values in explainable maps exposed some differences between maps of true and false positive (TP/FP) examples. Inspired by those results, we explore in this paper the use of characteristics of lesion-specific saliency maps to refine segmentation and detection scores. We generate around 21000 maps from as many TP/FP lesions in a batch of 72 patients (training set) and 4868 from the 37 patients in the test set. 93 radiomic features extracted from the first set of maps were used to train a logistic regression model and classify TP versus FP. On the test set, F1 score and PPV were improved by a large margin when compared to the initial model, reaching 0.7450 and 0.7817, with 95% confidence intervals of [0.7358, 0.7547] and [0.7679, 0.7962], respectively. These results suggest that saliency maps can be used to refine prediction scores, boosting a model's performances.
Related papers
- Deep learning-based segmentation of T1 and T2 cardiac MRI maps for automated disease detection [0.2593137041747032]
Tissue mapping enables quantitative cardiac tissue characterization but is limited by interobserver variability during manual delineation.<n>Traditional approaches relying on average relaxation values and single cutoffs may oversimplify complexity.<n>This study evaluates whether machine learning can achieve segmentation accuracy comparable to inter-observer variability.
arXiv Detail & Related papers (2025-07-01T16:08:54Z) - Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment [3.5408411348831232]
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI.<n>The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the DiceedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions.
arXiv Detail & Related papers (2025-05-23T14:40:09Z) - Instance-level quantitative saliency in multiple sclerosis lesion segmentation [1.3504571547122364]
We propose two instance-level explanation maps for semantic segmentation based on SmoothGrad and Grad-CAM++ methods.
Then, we investigated their relevance for the detection and segmentation of white matter lesions (WML) in multiple sclerosis (MS)
Data were randomly split into training, validation and test sets to train a 3D U-Net for MS lesion segmentation.
arXiv Detail & Related papers (2024-06-13T17:17:31Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - Learning to diagnose common thorax diseases on chest radiographs from
radiology reports in Vietnamese [0.33598755777055367]
We propose a data collecting and annotation pipeline that extracts information from Vietnamese radiology reports to provide accurate labels for chest X-ray (CXR) images.
This can benefit Vietnamese radiologists and clinicians by annotating data that closely match their endemic diagnosis categories which may vary from country to country.
arXiv Detail & Related papers (2022-09-11T06:06:03Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Dopamine Transporter SPECT Image Classification for Neurodegenerative
Parkinsonism via Diffusion Maps and Machine Learning Classifiers [0.0]
This study aims to provide an automatic and robust method to classify the SPECT images into two types, namely Normal and Abnormal DaT-SPECT image groups.
The 3D images of N patients are mapped to an N by N pairwise distance matrix and training set are embedded into a low-dimensional space by using diffusion maps.
The feasibility of the method is demonstrated via Parkinsonism Progression Markers Initiative (PPMI) dataset of 1097 subjects and a clinical cohort from Kaohsiung Chang Gung Memorial Hospital (KCGMH-TW) of 630 patients.
arXiv Detail & Related papers (2021-04-06T06:30:15Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.
In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient.
arXiv Detail & Related papers (2021-01-25T01:48:27Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
This work presents a Deep Learning method based on the late fusion of different convolutional architectures.
We built four training datasets combining images from public chest x-ray datasets and our institutional archive.
We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool.
arXiv Detail & Related papers (2020-12-23T14:38:35Z) - Deep Learning Based Detection and Localization of Intracranial Aneurysms
in Computed Tomography Angiography [5.973882600944421]
A two-step model was implemented: a 3D region proposal network for initial aneurysm detection and 3D DenseNetsfor false-positive reduction.
Our model showed statistically higher accuracy, sensitivity, and specificity when compared to the available model at 0.25 FPPV and the best F-1 score.
arXiv Detail & Related papers (2020-05-22T10:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.