Entanglement dynamics and eigenstate correlations in strongly disordered quantum many-body systems
- URL: http://arxiv.org/abs/2406.09392v1
- Date: Thu, 13 Jun 2024 17:59:07 GMT
- Title: Entanglement dynamics and eigenstate correlations in strongly disordered quantum many-body systems
- Authors: Bikram Pain, Sthitadhi Roy,
- Abstract summary: We present a microscopic theory of entanglement in terms of dynamical eigenstate correlations of strongly disordered, interacting quantum systems.
We show that the hierarchy of these timescales along with their non-trivial distributions conspire to produce the logarithmic in time growth of entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The many-body localised phase of quantum systems is an unusual dynamical phase wherein the system fails to thermalise and yet, entanglement grows unboundedly albeit very slowly in time. We present a microscopic theory of this ultraslow growth of entanglement in terms of dynamical eigenstate correlations of strongly disordered, interacting quantum systems in the many-body localised regime. These correlations involve sets of four or more eigenstates and hence, go beyond correlations involving pairs of eigenstates which are usually studied in the context of eigenstate thermalisation or lack thereof. We consider the minimal case, namely the second R\'enyi entropy of entanglement, of an initial product state as well as that of the time-evolution operator, wherein the correlations involve quartets of four eigenstates. We identify that the dynamics of the entanglement entropy is dominated by the spectral correlations within certain special quartets of eigenstates. We uncover the spatial structure of these special quartets and the ensuing statistics of the spectral correlations amongst the eigenstates therein, which reveals a hierarchy of timescales or equivalently, energyscales. We show that the hierarchy of these timescales along with their non-trivial distributions conspire to produce the logarithmic in time growth of entanglement, characteristic of the many-body localised regime. The underlying spatial structures in the set of special quartets also provides a microscopic understanding of the spacetime picture of the entanglement growth. The theory therefore provides a much richer perspective on entanglement growth in strongly disordered systems compared to the commonly employed phenomenological approach based on the $\ell$-bit picture.
Related papers
- Universal correlations in chaotic many-body quantum states: Fock-space formulation of Berrys random wave model [0.0]
We show that the randomness of chaotic eigenstates in interacting quantum systems hides subtle correlations imposed by their finite energy per particle.
These correlations are revealed when Berrys approach for chaotic eigenfunctions in single-particle systems is lifted into many-body space.
We then identify the universality of both the cross-correlations and the Gaussian distribution of expansion coefficients as the signatures of chaotic eigenstates.
arXiv Detail & Related papers (2024-03-15T09:26:17Z) - Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories [0.0]
We show that open quantum systems with nearly degenerate energy levels exhibit long-lived metastable states in the approach to equilibrium.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues.
arXiv Detail & Related papers (2024-02-07T02:06:51Z) - Generalized Free Cumulants for Quantum Chaotic Systems [0.0]
The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in isolated quantum systems.
We show that the ETH is a sufficient mechanism for thermalization, in general.
In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times.
arXiv Detail & Related papers (2024-01-24T22:04:41Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Metastability and discrete spectrum of long-range systems [0.0]
We show that the spectrum of systems with power-law decaying couplings remains discrete up to the thermodynamic limit.
The existence of QSSs may be traced back to the finiteness of Poincar'e recurrence times.
arXiv Detail & Related papers (2020-12-31T18:32:13Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.