Metastability and discrete spectrum of long-range systems
- URL: http://arxiv.org/abs/2012.15808v2
- Date: Thu, 19 Aug 2021 11:22:36 GMT
- Title: Metastability and discrete spectrum of long-range systems
- Authors: Nicol\`o Defenu
- Abstract summary: We show that the spectrum of systems with power-law decaying couplings remains discrete up to the thermodynamic limit.
The existence of QSSs may be traced back to the finiteness of Poincar'e recurrence times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long lived quasi-stationary states (QSSs) are a signature characteristic of
long-range interacting systems both in the classical and in the quantum realms.
Often, they emerge after a sudden quench of the Hamiltonian internal parameters
and present a macroscopic life-time, which increases with the system size.
Despite their ubiquity, the fundamental mechanism at their root remains
unknown. Here, we show that the spectrum of systems with power-law decaying
couplings remains discrete up to the thermodynamic limit. As a consequence,
several traditional results on the chaotic nature of the spectrum in many-body
quantum systems are not satisfied in presence of long-range interactions. In
particular, the existence of QSSs may be traced back to the finiteness of
Poincar\'e recurrence times. This picture justifies and extends known results
on the anomalous magnetization dynamics in the quantum Ising model with
power-law decaying couplings. The comparison between the discrete spectrum of
long-range systems and more conventional examples of pure point spectra in the
disordered case is also discussed.
Related papers
- Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.
Our bounds are tighter than previously derived quantum TURs and KURs for single observables.
We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Entanglement dynamics and eigenstate correlations in strongly disordered quantum many-body systems [0.0]
We present a microscopic theory of entanglement in terms of dynamical eigenstate correlations of strongly disordered, interacting quantum systems.
We show that the hierarchy of these timescales along with their non-trivial distributions conspire to produce the logarithmic in time growth of entanglement.
arXiv Detail & Related papers (2024-06-13T17:59:07Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Correlations, long-range entanglement and dynamics in long-range Kitaev
chains [0.0]
We study a one-dimensional fermionic chain with long-range hopping and pairing.
We prove that a long-range quantum mutual information exists if the exponent of the decay is not larger than one.
We also show that the adiabatic dynamics is dictated by the divergence of a topological length scale at the quantum critical point.
arXiv Detail & Related papers (2022-06-20T10:09:38Z) - Noise-Resilient Phase Transitions and Limit-Cycles in Coupled Kerr
Oscillators [0.0]
Driven-dissipative quantum many-body systems have been the subject of many studies in recent years.
We investigate the Green's function and correlation of the cavity modes in different regions.
Our results shed light on the emergence of dissipative phase transitions in open quantum systems.
arXiv Detail & Related papers (2021-06-08T01:46:01Z) - Time periodicity from randomness in quantum systems [0.0]
Many complex systems can spontaneously oscillate under non-periodic forcing.
We show that this behavior can emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation due to sequential coupling with auxiliary systems at random times.
arXiv Detail & Related papers (2021-04-27T18:02:31Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Signatures of quantum chaos transition in short spin chains [0.0]
The study of the long-time oscillations of the out-of-time-ordered correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a small number of degrees of freedom.
We show that the systematic of the OTOC oscillations describes well, in a chain with only 4 spins, the integra-to-chaos transition inherited from the infinite chain.
arXiv Detail & Related papers (2020-04-29T19:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.