Phase and amplitude modes in the anisotropic Dicke model with matter interactions
- URL: http://arxiv.org/abs/2406.09446v1
- Date: Wed, 12 Jun 2024 01:29:25 GMT
- Title: Phase and amplitude modes in the anisotropic Dicke model with matter interactions
- Authors: Ricardo Herrera Romero, Miguel Angel Bastarrachea-Magnani,
- Abstract summary: Phase and amplitude modes are emergent phenomena that manifest across diverse physical systems.
We study their behavior in an anisotropic Dicke model that includes collective matter interactions.
We unveil novel phenomena due to the unique critical features provided by the interplay between the anisotropy and matter interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase and amplitude modes are emergent phenomena that manifest across diverse physical systems, from condensed matter and particle physics to quantum optics. Also called polariton modes, we study their behavior in an anisotropic Dicke model that includes collective matter interactions. We study the low-lying spectrum in the thermodynamic limit via the Holstein-Primakoff transformation and contrast the results with the semiclassical energy surface obtained via coherent states. We also explore the geometric phase for both boson and spin contours in the parameter space as a function of the phases in the system. We unveil novel phenomena due to the unique critical features provided by the interplay between the anisotropy and matter interactions. We expect our results to serve for the observation of phase and amplitude modes in current quantum information platforms.
Related papers
- Non-Hermitian Effects in Dicke models [18.25522741939446]
We study the manifestation of non-Hermitian effects in the Dicke model of light-matter interaction.
Our findings deepen the understanding of non-Hermitian physics in light-matter interaction.
arXiv Detail & Related papers (2024-11-13T06:30:10Z) - Investigating entropic dynamics of multiqubit cavity QED system [0.0]
Entropic dynamics of a multiqubit cavity quantum electrodynamics system is simulated and various aspects of entropy are explored.
In the modified version of the Tavis-Cummings-Hubbard model, atoms are held in optical cavities through optical tweezers.
The interaction of atom with the cavity results in different electronic transitions and the creation and annihilation of corresponding types of photon.
arXiv Detail & Related papers (2024-05-09T11:51:00Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Critical phenomena in light-matter systems with collective matter
interactions [0.0]
We study the quantum phase diagram and the onset of quantum critical phenomena in a generalized Dicke model.
We unveil a rich phase diagram, the presence of new phases, and new transitions that result from varying the strength of the qubits interactions.
arXiv Detail & Related papers (2022-07-26T18:19:38Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Exploring dynamical phase transitions with cold atoms in an optical
cavity [0.0]
We use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model.
Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters.
arXiv Detail & Related papers (2019-10-01T14:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.