Non-Hermitian Effects in Dicke models
- URL: http://arxiv.org/abs/2411.08365v1
- Date: Wed, 13 Nov 2024 06:30:10 GMT
- Title: Non-Hermitian Effects in Dicke models
- Authors: Bin Jiang, Yi-Yang Li, Junjie Liu, Chen Wang, Jian-Hua Jiang,
- Abstract summary: We study the manifestation of non-Hermitian effects in the Dicke model of light-matter interaction.
Our findings deepen the understanding of non-Hermitian physics in light-matter interaction.
- Score: 18.25522741939446
- License:
- Abstract: The Dicke model, which describes the collective interaction between an ensemble of atoms and a single-mode photon field, serves as a fundamental framework for studying light-matter interactions and quantum electrodynamic phenomena. In this work, we investigate the manifestation of non-Hermitian effects in a generalized Dicke model, where two dissipative atom ensembles interact with a single-mode photon field. By applying the Holstein-Primakoff transformation, we explore the system in the semiclassical limit as a non-Hermitian Dicke model, revealing rich exceptional points (EPs) and diabolic points in such a system. We find that, by introducing the nonlinear saturation gain into an atomic ensemble, higher-order EP can be induced, leading to intriguing properties. Furthermore, if the system is extended to a one-dimensional chain, then the band topology will interplay with the non-Hermitian effect. In the quantum regime, we explore the quantum signature of EPs, noting that the conditions for their emergence are influenced by discrete photon numbers. We further study the transition from photon anti-bunching to bunching at a steady state, driven by non-Hermitian dynamics. Our findings deepen the understanding of non-Hermitian physics in light-matter interaction which is instructive for the design of advanced photonic and quantum systems.
Related papers
- Phase and amplitude modes in the anisotropic Dicke model with matter interactions [0.0]
Phase and amplitude modes are emergent phenomena that manifest across diverse physical systems.
We study their behavior in an anisotropic Dicke model that includes collective matter interactions.
We unveil novel phenomena due to the unique critical features provided by the interplay between the anisotropy and matter interactions.
arXiv Detail & Related papers (2024-06-12T01:29:25Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Direct Manipulation of quantum entanglement from the non-Hermitian
nature of light-matter interaction [7.106490464673198]
We report the demonstration of exceptional point (EP) in biphotons by measuring the light-atom interaction as a natural non-Hermitian system.
Such biphoton correlation is tuned within an unprecedented large range from Rabi oscillation to antibunching-exponential-decay.
Our results provide a unique method to realize the controllability of natural non-Hermitian processes without the assistance of artificial photonic structures.
arXiv Detail & Related papers (2023-11-30T03:52:11Z) - Non-perturbative mass renormalization effects in non-relativistic
quantum electrodynamics [0.0]
This work lays the foundation to accurately describe ground-state properties in multimode photonic environments.
We show how the multimode photon field influences various ground and excited-state properties of atomic and molecular systems.
arXiv Detail & Related papers (2023-10-04T23:38:13Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Concentrated subradiant modes in one-dimensional atomic array coupled
with chiral waveguides [0.510036543634541]
Non-Hermitian systems have recently attracted broad interest and exhibited intriguing physical phenomena.
Here we propose a non-Hermitian atom-waveguide system composed of a tilted one-dimensional atomic array.
We find the excitation of the collective atomic states concentrates in the middle interface, pointing towards the non-Hermitian skin effect.
arXiv Detail & Related papers (2022-08-23T07:34:26Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Exotic interactions mediated by a non-Hermitian photonic bath [0.0]
We study the exotic interaction between emitters mediated by the photonic modes of a lossy photonic lattice.
We show in a paradigmatic case study that structured losses in the field can seed exotic emission properties.
These findings introduce a new paradigm of light-mediated interactions with unprecedented features.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.