論文の概要: An Effective Software Risk Prediction Management Analysis of Data Using Machine Learning and Data Mining Method
- arxiv url: http://arxiv.org/abs/2406.09463v2
- Date: Sat, 29 Jun 2024 20:27:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 13:30:57.235725
- Title: An Effective Software Risk Prediction Management Analysis of Data Using Machine Learning and Data Mining Method
- Title(参考訳): 機械学習とデータマイニング法を用いたデータの効果的なソフトウェアリスク予測管理分析
- Authors: Jinxin Xu, Yue Wang, Ruisi Li, Ziyue Wang, Qian Zhao,
- Abstract要約: ソフトウェアプロジェクトのリスクの適切な優先順位付けは、ソフトウェアプロジェクトのパフォーマンス機能と最終的な成功を確認する上で重要な要素である。
本稿では,最新の最先端WF攻撃モデルの相互依存性をキャプチャする逐次拡張パラメータ最適化手法を提案する。
NASA 93のデータセットと93のソフトウェアプロジェクトによる実験的な検証が行われた。
- 参考スコア(独自算出の注目度): 10.608932697201274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For one to guarantee higher-quality software development processes, risk management is essential. Furthermore, risks are those that could negatively impact an organization's operations or a project's progress. The appropriate prioritisation of software project risks is a crucial factor in ascertaining the software project's performance features and eventual success. They can be used harmoniously with the same training samples and have good complement and compatibility. We carried out in-depth tests on four benchmark datasets to confirm the efficacy of our CIA approach in closed-world and open-world scenarios, with and without defence. We also present a sequential augmentation parameter optimisation technique that captures the interdependencies of the latest deep learning state-of-the-art WF attack models. To achieve precise software risk assessment, the enhanced crow search algorithm (ECSA) is used to modify the ANFIS settings. Solutions that very slightly alter the local optimum and stay inside it are extracted using the ECSA. ANFIS variable when utilising the ANFIS technique. An experimental validation with NASA 93 dataset and 93 software project values was performed. This method's output presents a clear image of the software risk elements that are essential to achieving project performance. The results of our experiments show that, when compared to other current methods, our integrative fuzzy techniques may perform more accurately and effectively in the evaluation of software project risks.
- Abstract(参考訳): 高品質なソフトウェア開発プロセスを保証するためには、リスク管理が不可欠です。
さらに、リスクは組織の運用やプロジェクトの進捗に悪影響を及ぼす可能性があるものなのです。
ソフトウェアプロジェクトのリスクの適切な優先順位付けは、ソフトウェアプロジェクトのパフォーマンス機能と最終的な成功を確認する上で重要な要素である。
同じトレーニングサンプルと調和して使用することができ、相補性と互換性がよい。
我々は、4つのベンチマークデータセットの詳細なテストを行い、秘密世界とオープン世界のシナリオにおけるCIAのアプローチの有効性を、防御なしで確認した。
また、最新のディープラーニングWF攻撃モデルの相互依存性をキャプチャする逐次拡張パラメータ最適化手法を提案する。
ソフトウェアリスクを正確に評価するために、ANFIS設定を変更するために拡張クローサーチアルゴリズム(ECSA)が使用される。
局所最適値をわずかに変化して内部に留まる解はECSAを用いて抽出される。
ANFIS技術を利用する場合のANFIS変数。
NASA 93のデータセットと93のソフトウェアプロジェクトによる実験的な検証が行われた。
本手法のアウトプットは,プロジェクトのパフォーマンスを達成する上で不可欠なソフトウェアリスク要素の明確なイメージを提示する。
実験の結果,従来の手法と比較すると,ソフトウェアプロジェクトのリスク評価において,統合ファジィ手法がより正確かつ効果的に機能できることが示唆された。
関連論文リスト
- SAFE: Advancing Large Language Models in Leveraging Semantic and Syntactic Relationships for Software Vulnerability Detection [23.7268575752712]
ソフトウェア脆弱性(SV)は、安全クリティカルなセキュリティシステムにとって、一般的かつ重要な懸念事項として浮上している。
本稿では,SVDのソースコードデータから意味的・統語的関係を学習し,活用するための大規模言語モデルの能力を高める新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-02T00:49:02Z) - Modelling Open-Source Software Reliability Incorporating Swarm
Intelligence-Based Techniques [0.0]
ソフトウェア業界では、2つのソフトウェアエンジニアリングのベストプラクティスが共存している。
クローズドソースソフトウェア信頼性予測のためのメタヒューリスティック最適化アルゴリズムの適用により、重要かつ正確な結果が得られた。
品質指標として、オープンソースのソフトウェア信頼性に関する結果は、オープンソースのソフトウェア信頼性成長モデリングの問題を解決するのに大いに役立ちます。
論文 参考訳(メタデータ) (2024-01-05T06:46:03Z) - Analyzing the Influence of Processor Speed and Clock Speed on Remaining Useful Life Estimation of Software Systems [0.9831489366502301]
本研究は,オペレーティングシステムやクロック速度などの環境特性の変化がソフトウェアにおけるRUL推定に与える影響を評価するために,解析を拡張した。
検出は、制御されたテストベッドの実際のパフォーマンスデータを用いて厳格に検証され、予測モデル生成データと比較される。
この調査は、ソフトウェアのメンテナンスと最適化戦略に実用的な知識をもたらす。
論文 参考訳(メタデータ) (2023-09-22T04:46:34Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - A Novel Multiple Ensemble Learning Models Based on Different Datasets
for Software Defect Prediction [3.6095388702618414]
本稿では,異なるデータセット上で,KNN,決定木,SVM,Na"ive Bayesのアンサンブル学習モデルを提案し,比較分析を行った。
CM1で訓練されたアンサンブルモデルの分類精度は98.56%、KM2で訓練されたアンサンブルモデルの分類精度は98.18%、PC1で訓練されたアンサンブル学習モデルの分類精度は99.27%である。
論文 参考訳(メタデータ) (2020-08-30T08:01:39Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。