論文の概要: Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering
- arxiv url: http://arxiv.org/abs/2501.05165v1
- Date: Thu, 09 Jan 2025 11:38:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 17:34:41.476497
- Title: Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering
- Title(参考訳): カオスの中で秩序をもたらす - セキュアなソフトウェアエンジニアリングにおける人工知能の役割について
- Authors: Matteo Esposito,
- Abstract要約: 進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処しなければならない。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context. Developing secure and reliable software remains a key challenge in software engineering (SE). The ever-evolving technological landscape offers both opportunities and threats, creating a dynamic space where chaos and order compete. Secure software engineering (SSE) must continuously address vulnerabilities that endanger software systems and carry broader socio-economic risks, such as compromising critical national infrastructure and causing significant financial losses. Researchers and practitioners have explored methodologies like Static Application Security Testing Tools (SASTTs) and artificial intelligence (AI) approaches, including machine learning (ML) and large language models (LLMs), to detect and mitigate these vulnerabilities. Each method has unique strengths and limitations. Aim. This thesis seeks to bring order to the chaos in SSE by addressing domain-specific differences that impact AI accuracy. Methodology. The research employs a mix of empirical strategies, such as evaluating effort-aware metrics, analyzing SASTTs, conducting method-level analysis, and leveraging evidence-based techniques like systematic dataset reviews. These approaches help characterize vulnerability prediction datasets. Results. Key findings include limitations in static analysis tools for identifying vulnerabilities, gaps in SASTT coverage of vulnerability types, weak relationships among vulnerability severity scores, improved defect prediction accuracy using just-in-time modeling, and threats posed by untouched methods. Conclusions. This thesis highlights the complexity of SSE and the importance of contextual knowledge in improving AI-driven vulnerability and defect prediction. The comprehensive analysis advances effective prediction models, benefiting both researchers and practitioners.
- Abstract(参考訳): コンテキスト。
セキュアで信頼性の高いソフトウェアを開発することは、ソフトウェア工学(SE)における重要な課題である。
進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処し、重要な国家インフラの妥協や重大な財政損失など、より広範な社会経済的リスクを負わなければならない。
研究者や実践者は、静的アプリケーションセキュリティテストツール(SASTT)や、マシンラーニング(ML)や大規模言語モデル(LLM)など、人工知能(AI)アプローチなどの方法論を調査して、これらの脆弱性を検出して軽減している。
それぞれの方法には独自の長所と制限がある。
エイム。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
方法論。
この研究は、努力を意識したメトリクスの評価、SASTTの分析、メソッドレベルの分析の実行、システマティックデータセットレビューのようなエビデンスベースのテクニックの活用など、実証的な戦略を交互に採用している。
これらのアプローチは、脆弱性予測データセットの特徴付けに役立つ。
結果。
主な発見は、脆弱性を識別するための静的解析ツールの制限、脆弱性タイプのSASTTカバレッジのギャップ、脆弱性の深刻度スコア間の弱い関係、ジャストインタイムモデリングによる欠陥予測精度の改善、未修正メソッドによる脅威などである。
結論。
この論文は、AI駆動の脆弱性と欠陥予測を改善する上で、SSEの複雑さとコンテキスト知識の重要性を強調している。
包括的な分析は効果的な予測モデルを進め、研究者と実践者の両方に利益をもたらす。
関連論文リスト
- LLMpatronous: Harnessing the Power of LLMs For Vulnerability Detection [0.0]
脆弱性検出のための大規模言語モデル(LLM)には、ユニークな課題がある。
脆弱性検出に機械学習モデルを使用した以前の試みは、効果がないことが証明されている。
我々は、これらの制限を緩和することに焦点を当てた、堅牢なAI駆動アプローチを提案する。
論文 参考訳(メタデータ) (2025-04-25T15:30:40Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
大規模言語モデル(LLM)は、ソフトウェア脆弱性検出のためのトランスフォーメーションツールとして登場している。
本稿では,脆弱性検出におけるLSMの詳細な調査を行う。
言語間の脆弱性検出、マルチモーダルデータ統合、リポジトリレベルの分析といった課題に対処する。
論文 参考訳(メタデータ) (2025-02-10T21:33:38Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
本稿では,自然言語処理(NLP)を利用して,共通脆弱性・暴露(CAPEC)脆弱性と共通攻撃パターン・分類(CAPEC)攻撃パターンを関連付ける手法を提案する。
実験による評価は,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-01-13T08:39:52Z) - CRepair: CVAE-based Automatic Vulnerability Repair Technology [1.147605955490786]
ソフトウェア脆弱性は、現代のソフトウェアとそのアプリケーションデータの完全性、セキュリティ、信頼性に重大な脅威をもたらす。
脆弱性修復の課題に対処するため、研究者らは、学習に基づく自動脆弱性修復技術が広く注目を集めるなど、様々な解決策を提案している。
本稿では,システムコードのセキュリティ脆弱性を修正することを目的としたCVAEベースの自動脆弱性修復技術であるCRepairを提案する。
論文 参考訳(メタデータ) (2024-11-08T12:55:04Z) - KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment [38.312774244521]
本稿では,CTI(Cyber Threat Intelligence)品質評価フレームワークの知識グラフに基づく検証手法を提案する。
提案手法では,検証対象のOSCTIキークレームを自動的に抽出するLarge Language Models (LLM)を導入している。
研究分野のギャップを埋めるために、異種情報源からの脅威情報評価のための最初のデータセットを作成し、公開しました。
論文 参考訳(メタデータ) (2024-08-15T11:32:46Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - A Survey on Failure Analysis and Fault Injection in AI Systems [28.30817443151044]
AIシステムの複雑さは脆弱性を露呈し、レジリエンスと信頼性を確保するために、障害分析(FA)と障害注入(FI)の堅牢な方法を必要とする。
この研究は、AIシステムの6層にわたる既存のFAとFIのアプローチを詳細に調査することで、このギャップを埋める。
この結果から,AIシステム障害の分類,既存のFIツールの能力評価,実世界とシミュレーション失敗の相違点が明らかになった。
論文 参考訳(メタデータ) (2024-06-28T00:32:03Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
本研究では,グラフ解析手法と改良型グラフ注意畳み込みニューラルネットワーク(GAT)モデルを提案する。
制御フローグラフを分析して、脆弱性の修正を目的とした依存性のアップグレードから発生するアプリケーションの変更をプロファイルします。
結果は、コード脆弱性のリレーショナルダイナミクスに関する微妙な洞察を提供する上で、強化されたGATモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-03-08T02:01:47Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
本稿では,REal-world vulnErabilities and Fixesをオープンソースリポジトリから収集するための自動収集フレームワークREEFを提案する。
脆弱性とその修正を収集する多言語クローラを開発し、高品質な脆弱性修正ペアをフィルタするためのメトリクスを設計する。
大規模な実験を通じて,我々の手法が高品質な脆弱性修正ペアを収集し,強力な説明を得られることを示す。
論文 参考訳(メタデータ) (2023-09-15T02:50:08Z) - Building Safe and Reliable AI systems for Safety Critical Tasks with
Vision-Language Processing [1.2183405753834557]
現在のAIアルゴリズムでは、障害検出の一般的な原因を特定できない。
予測の質を定量化するためには、追加のテクニックが必要である。
この論文は、分類、画像キャプション、視覚質問応答といったタスクのための視覚言語データ処理に焦点を当てる。
論文 参考訳(メタデータ) (2023-08-06T18:05:59Z) - SecureFalcon: Are We There Yet in Automated Software Vulnerability Detection with LLMs? [3.566250952750758]
SecureFalconは、Falcon-40Bモデルから派生した1億1100万のパラメータしか持たない革新的なモデルアーキテクチャである。
SecureFalconはバイナリ分類で94%の精度、マルチクラス化で最大92%、即時CPU推論時間を実現している。
論文 参考訳(メタデータ) (2023-07-13T08:34:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。