An Effective Software Risk Prediction Management Analysis of Data Using Machine Learning and Data Mining Method
- URL: http://arxiv.org/abs/2406.09463v2
- Date: Sat, 29 Jun 2024 20:27:11 GMT
- Title: An Effective Software Risk Prediction Management Analysis of Data Using Machine Learning and Data Mining Method
- Authors: Jinxin Xu, Yue Wang, Ruisi Li, Ziyue Wang, Qian Zhao,
- Abstract summary: The appropriate prioritisation of software project risks is a crucial factor in ascertaining the software project's performance features and eventual success.
We present a sequential augmentation parameter optimisation technique that captures the interdependencies of the latest deep learning state-of-the-art WF attack models.
An experimental validation with NASA 93 dataset and 93 software project values was performed.
- Score: 10.608932697201274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For one to guarantee higher-quality software development processes, risk management is essential. Furthermore, risks are those that could negatively impact an organization's operations or a project's progress. The appropriate prioritisation of software project risks is a crucial factor in ascertaining the software project's performance features and eventual success. They can be used harmoniously with the same training samples and have good complement and compatibility. We carried out in-depth tests on four benchmark datasets to confirm the efficacy of our CIA approach in closed-world and open-world scenarios, with and without defence. We also present a sequential augmentation parameter optimisation technique that captures the interdependencies of the latest deep learning state-of-the-art WF attack models. To achieve precise software risk assessment, the enhanced crow search algorithm (ECSA) is used to modify the ANFIS settings. Solutions that very slightly alter the local optimum and stay inside it are extracted using the ECSA. ANFIS variable when utilising the ANFIS technique. An experimental validation with NASA 93 dataset and 93 software project values was performed. This method's output presents a clear image of the software risk elements that are essential to achieving project performance. The results of our experiments show that, when compared to other current methods, our integrative fuzzy techniques may perform more accurately and effectively in the evaluation of software project risks.
Related papers
- SAFE: Advancing Large Language Models in Leveraging Semantic and Syntactic Relationships for Software Vulnerability Detection [23.7268575752712]
Software vulnerabilities (SVs) have emerged as a prevalent and critical concern for safety-critical security systems.
We propose a novel framework that enhances the capability of large language models to learn and utilize semantic and syntactic relationships from source code data for SVD.
arXiv Detail & Related papers (2024-09-02T00:49:02Z) - Modelling Open-Source Software Reliability Incorporating Swarm
Intelligence-Based Techniques [0.0]
In the software industry, two software engineering best practices coexist: open-source and closed-source software.
Applying meta-heuristic optimization algorithms for closed-source software reliability prediction has produced significant and accurate results.
Results on open-source software reliability - as a quality indicator - would greatly help solve the open-source software reliability growth-modelling problem.
arXiv Detail & Related papers (2024-01-05T06:46:03Z) - Analyzing the Influence of Processor Speed and Clock Speed on Remaining Useful Life Estimation of Software Systems [0.9831489366502301]
This research extends the analysis to assess how changes in environmental attributes, such as operating system and clock speed, affect RUL estimation in software.
Findings are rigorously validated using real performance data from controlled test beds and compared with predictive model-generated data.
This exploration yields actionable knowledge for software maintenance and optimization strategies.
arXiv Detail & Related papers (2023-09-22T04:46:34Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - A Novel Multiple Ensemble Learning Models Based on Different Datasets
for Software Defect Prediction [3.6095388702618414]
This paper proposes an ensemble learning models and perform comparative analysis among KNN, Decision tree, SVM and Na"ive Bayes on different datasets.
The classification accuracy of ensemble model trained on CM1 is 98.56%, classification accuracy of ensemble model trained on KM2 is 98.18% similarly, the classification accuracy of ensemble learning model trained on PC1 is 99.27%.
arXiv Detail & Related papers (2020-08-30T08:01:39Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.