FADE: Towards Fairness-aware Augmentation for Domain Generalization via Classifier-Guided Score-based Diffusion Models
- URL: http://arxiv.org/abs/2406.09495v2
- Date: Wed, 28 Aug 2024 12:46:28 GMT
- Title: FADE: Towards Fairness-aware Augmentation for Domain Generalization via Classifier-Guided Score-based Diffusion Models
- Authors: Yujie Lin, Dong Li, Chen Zhao, Minglai Shao,
- Abstract summary: Fairness-aware domain generalization (FairDG) has emerged as a critical challenge for deploying trustworthy AI systems.
Traditional methods for addressing fairness have failed in domain generalization due to their lack of consideration for distribution shifts.
We propose Fairness-aware Score-Guided Diffusion Models (FADE) as a novel approach to effectively address the FairDG issue.
- Score: 9.734351986961613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness-aware domain generalization (FairDG) has emerged as a critical challenge for deploying trustworthy AI systems, particularly in scenarios involving distribution shifts. Traditional methods for addressing fairness have failed in domain generalization due to their lack of consideration for distribution shifts. Although disentanglement has been used to tackle FairDG, it is limited by its strong assumptions. To overcome these limitations, we propose Fairness-aware Classifier-Guided Score-based Diffusion Models (FADE) as a novel approach to effectively address the FairDG issue. Specifically, we first pre-train a score-based diffusion model (SDM) and two classifiers to equip the model with strong generalization capabilities across different domains. Then, we guide the SDM using these pre-trained classifiers to effectively eliminate sensitive information from the generated data. Finally, the generated fair data is used to train downstream classifiers, ensuring robust performance under new data distributions. Extensive experiments on three real-world datasets demonstrate that FADE not only enhances fairness but also improves accuracy in the presence of distribution shifts. Additionally, FADE outperforms existing methods in achieving the best accuracy-fairness trade-offs.
Related papers
- FEED: Fairness-Enhanced Meta-Learning for Domain Generalization [13.757379847454372]
Generalizing to out-of-distribution data while aware of model fairness is a significant and challenging problem in meta-learning.
This paper introduces an approach to fairness-aware meta-learning that significantly enhances domain generalization capabilities.
arXiv Detail & Related papers (2024-11-02T17:34:33Z) - Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) holds substantial promise in widespread applications.
FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations.
This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation.
arXiv Detail & Related papers (2024-03-11T10:50:53Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
We propose a fine-grained data augmentation strategy for imposing fairness constraints.
We show that group fairness can be achieved by regularizing the models on transition paths of sensitive features between groups.
Our proposed method does not assume any data generative model and ensures good generalization for both accuracy and fairness.
arXiv Detail & Related papers (2023-04-01T11:23:00Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Transferring Fairness under Distribution Shifts via Fair Consistency
Regularization [15.40257564187799]
We study how to transfer model fairness under distribution shifts, a widespread issue in practice.
Inspired by the success of self-training in transferring accuracy under domain shifts, we derive a sufficient condition for transferring group fairness.
arXiv Detail & Related papers (2022-06-26T06:19:56Z) - Certifying Some Distributional Fairness with Subpopulation Decomposition [20.009388617013986]
We first formulate the certified fairness of an ML model trained on a given data distribution as an optimization problem.
We then propose a general fairness certification framework and instantiate it for both sensitive shifting and general shifting scenarios.
Our framework is flexible to integrate additional non-skewness constraints and we show that it provides even tighter certification under different real-world scenarios.
arXiv Detail & Related papers (2022-05-31T01:17:50Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
We propose a Towards Fair Knowledge Transfer framework to handle the fairness challenge in imbalanced cross-domain learning.
Specifically, a novel cross-domain mixup generation is exploited to augment the minority source set with target information to enhance fairness.
Our model significantly improves over 20% on two benchmarks in terms of the overall accuracy.
arXiv Detail & Related papers (2020-10-23T06:29:09Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.