論文の概要: QMamba: On First Exploration of Vision Mamba for Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2406.09546v2
- Date: Thu, 29 May 2025 10:43:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.270177
- Title: QMamba: On First Exploration of Vision Mamba for Image Quality Assessment
- Title(参考訳): QMamba:画像品質評価のためのVision Mambaの最初の探索について
- Authors: Fengbin Guan, Xin Li, Zihao Yu, Yiting Lu, Zhibo Chen,
- Abstract要約: 画像品質評価(IQA)において、最近人気になった基礎モデルであるState Space Model/Mambaを初めて探求する。
本稿では,3つの重要なIQAタスクに対して,QMambaモデルを再検討し,適応させることによりQMambaを提案する。
我々のStylePromptは、計算コストを下げて知覚伝達を改善する。
- 参考スコア(独自算出の注目度): 15.320011514412437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we take the first exploration of the recently popular foundation model, i.e., State Space Model/Mamba, in image quality assessment (IQA), aiming at observing and excavating the perception potential in vision Mamba. A series of works on Mamba has shown its significant potential in various fields, e.g., segmentation and classification. However, the perception capability of Mamba remains under-explored. Consequently, we propose QMamba by revisiting and adapting the Mamba model for three crucial IQA tasks, i.e., task-specific, universal, and transferable IQA, which reveals its clear advantages over existing foundational models, e.g., Swin Transformer, ViT, and CNNs, in terms of perception and computational cost. To improve the transferability of QMamba, we propose the StylePrompt tuning paradigm, where lightweight mean and variance prompts are injected to assist task-adaptive transfer learning of pre-trained QMamba for different downstream IQA tasks. Compared with existing prompt tuning strategies, our StylePrompt enables better perceptual transfer with lower computational cost. Extensive experiments on multiple synthetic, authentic IQA datasets, and cross IQA datasets demonstrate the effectiveness of our proposed QMamba. The code will be available at: https://github.com/bingo-G/QMamba.git
- Abstract(参考訳): 本研究では,近年普及している基礎モデルであるState Space Model/Mambaのイメージ品質評価(IQA)について,視覚的マンバの知覚可能性の観察と発掘を目的とした調査を行った。
マンバに関する一連の研究は、様々な分野、例えば、セグメンテーション、分類においてその大きな可能性を示してきた。
しかし、マンバの知覚能力は未発見のままである。
そこで我々は,QMambaモデルを再検討し,既存の基本モデルであるSwin Transformer,ViT,CNNに対して,認識と計算コストの観点から明確な優位性を示す,タスク固有性,普遍性,転送可能なIQAの3つの重要なIQAタスクについて,Mambaモデルを適応させることによりQMambaを提案する。
QMambaの転送性を改善するために,QMambaのタスク適応型トランスファー学習を支援するために,軽量な平均と分散プロンプトを注入するStylePromptチューニングパラダイムを提案する。
既存のプロンプトチューニング戦略と比較すると,StylePromptは計算コストを低減して知覚伝達を向上する。
提案したQMambaの有効性を示すために,複数の合成,真正IQAデータセット,交差IQAデータセットの大規模な実験を行った。
コードは以下の通り。 https://github.com/bingo-G/QMamba.git
関連論文リスト
- TransMamba: Fast Universal Architecture Adaption from Transformers to Mamba [88.31117598044725]
本稿では,既存のTransformerモデルの知識を,TransMambaと呼ばれる代替アーキテクチャのMambaに伝達するクロスアーキテクチャトレーニングについて検討する。
提案手法では,新しいマンバモデルの訓練を高速化し,ユニモーダルタスクおよびクロスモーダルタスクにおける有効性を確保するための2段階戦略を採用している。
クロスモーダル学習のために,言語認識をMambaの視覚的特徴に統合し,Mambaアーキテクチャのクロスモーダルインタラクション能力を向上するクロスマンバモジュールを提案する。
論文 参考訳(メタデータ) (2025-02-21T01:22:01Z) - From Markov to Laplace: How Mamba In-Context Learns Markov Chains [36.22373318908893]
我々はマルコフ連鎖の文脈内学習について研究し、驚くべき現象を明らかにする。
トランスとは異なり、単層マンバでさえ、文脈内ラプラシアスムージング推定器を効率的に学習する。
これらの理論的な洞察は経験的な結果と強く一致し、マンバと最適統計推定器の間の最初の公式な関係を表す。
論文 参考訳(メタデータ) (2025-02-14T14:13:55Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mambaは、新しいステートスペースモデル(SSM)として、自然言語処理やコンピュータビジョンに広く応用されている。
本稿では,MambaとU-Net for SEタスクを統合する革新的なアーキテクチャであるMamba-SEUNetを紹介する。
論文 参考訳(メタデータ) (2024-12-21T13:43:51Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
本研究では,長い文脈の理解能力を高めるReMambaを提案する。
ReMambaは2段階のプロセスで選択的圧縮と適応のテクニックを取り入れている。
論文 参考訳(メタデータ) (2024-08-28T02:47:27Z) - A Survey of Mamba [27.939712558507516]
近年,基礎モデル構築の代替手段として,Mambaという新しいアーキテクチャが登場している。
本研究では,マンバモデルの発展,多様なデータにマンバを適応させる技術,およびマンバが優れている応用について検討する。
論文 参考訳(メタデータ) (2024-08-02T09:18:41Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba [77.21394300708172]
ディープニューラルネットワークアーキテクチャであるTransformerは、長年、自然言語処理などの分野を支配してきた。
マンバの最近の導入は、その優位性に挑戦し、研究者の間でかなりの関心を喚起し、マンバをベースとした一連のモデルが顕著な可能性を示している。
本研究は,総合的な議論をまとめ,本質的な研究の側面に潜り込み,(1)構造的状態空間モデルの原理に基づくマンバ機構の機能とその基盤,(2)提案されたマンバの様々なネットワークへの統合,(3)トランスフォーマーの代替としての可能性を探る。
論文 参考訳(メタデータ) (2024-06-24T15:27:21Z) - Demystify Mamba in Vision: A Linear Attention Perspective [72.93213667713493]
Mambaは線形計算複雑性を持つ効率的な状態空間モデルである。
我々は,Mambaが線形アテンショントランスフォーマーと驚くほど類似していることを示す。
本稿では,これら2つの鍵設計の利点を線形注意に取り入れた,マンバ様線形注意(MLLA)モデルを提案する。
論文 参考訳(メタデータ) (2024-05-26T15:31:09Z) - An Investigation of Incorporating Mamba for Speech Enhancement [45.610243349192096]
我々は,マンバをベースとした回帰モデルを用いて音声信号の特徴付けと,SEMambaと呼ばれるマンバに基づくSEシステムの構築を行う。
SEMambaは有望な結果を示し、VoiceBank-DEMANDデータセットでPSSQスコアが3.55に達した。
論文 参考訳(メタデータ) (2024-05-10T16:18:49Z) - CLIP-Mamba: CLIP Pretrained Mamba Models with OOD and Hessian Evaluation [18.383760896304604]
本報告では,コントラッシブ・テクニカル・イメージ・プレトレーニング(CLIP)を利用したMambaモデルをトレーニングする最初の試みを紹介する。
Mambaモデル67万のパラメータは、ゼロショット分類タスクにおけるビジョントランスフォーマー(ViT)モデルと同等である。
論文 参考訳(メタデータ) (2024-04-30T09:40:07Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
最近の選択的構造化状態空間モデルであるMambaは、ロングシーケンスモデリングにおいて優れている。
2024年1月以降、マンバは多様なコンピュータビジョンタスクに積極的に適用されてきた。
本稿では,200以上の論文を分析し,マンバの視覚的アプローチを概観する。
論文 参考訳(メタデータ) (2024-04-29T16:51:30Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。