論文の概要: Multimodal Large Language Models with Fusion Low Rank Adaptation for Device Directed Speech Detection
- arxiv url: http://arxiv.org/abs/2406.09617v1
- Date: Thu, 13 Jun 2024 22:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 17:05:01.901152
- Title: Multimodal Large Language Models with Fusion Low Rank Adaptation for Device Directed Speech Detection
- Title(参考訳): デバイス指向音声検出のための統合低ランク適応型マルチモーダル大言語モデル
- Authors: Shruti Palaskar, Oggi Rudovic, Sameer Dharur, Florian Pesce, Gautam Krishna, Aswin Sivaraman, Jack Berkowitz, Ahmed Hussen Abdelaziz, Saurabh Adya, Ahmed Tewfik,
- Abstract要約: 大規模言語モデル(LLM)は人間のような会話を約束しているが、主にテキストデータに基づいて事前訓練されている。
本稿では,事前学習した単調なLDMを効率よく適用し,これまで目に見えなかった新しいモダリティを消費するFLORA手法を提案する。
デバイス指向音声検出では、FLoRAを用いることで、テキストのみのアプローチに比べて、マルチモーダルLLMは22%の誤差率(EER)の相対的な低減を実現している。
- 参考スコア(独自算出の注目度): 8.683288452838136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although Large Language Models (LLMs) have shown promise for human-like conversations, they are primarily pre-trained on text data. Incorporating audio or video improves performance, but collecting large-scale multimodal data and pre-training multimodal LLMs is challenging. To this end, we propose a Fusion Low Rank Adaptation (FLoRA) technique that efficiently adapts a pre-trained unimodal LLM to consume new, previously unseen modalities via low rank adaptation. For device-directed speech detection, using FLoRA, the multimodal LLM achieves 22% relative reduction in equal error rate (EER) over the text-only approach and attains performance parity with its full fine-tuning (FFT) counterpart while needing to tune only a fraction of its parameters. Furthermore, with the newly introduced adapter dropout, FLoRA is robust to missing data, improving over FFT by 20% lower EER and 56% lower false accept rate. The proposed approach scales well for model sizes from 16M to 3B parameters.
- Abstract(参考訳): 大規模言語モデル(LLM)は人間のような会話を約束しているが、主にテキストデータに基づいて事前訓練されている。
音声やビデオの組み込みによる性能向上は可能であるが,大規模なマルチモーダルデータ収集や,事前学習を行うマルチモーダルLLMは困難である。
そこで本研究では,FLORA(Fusion Low Rank Adaptation)技術を提案する。
デバイス指向音声検出では、FLoRAを用いることで、テキストのみのアプローチよりも22%の誤差率(EER)を相対的に減少させ、そのパラメータのごく一部をチューニングすることなく、FFT(Full Fine-tuning)と同等の性能が得られる。
さらに、新たに導入されたアダプタのドロップアウトでは、FLoRAはデータの欠落に対して堅牢であり、FFTよりも20%低いEERと56%低い偽受け入れ率で改善されている。
提案手法はモデルのサイズを16Mから3Bパラメータに拡大する。
関連論文リスト
- Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages [10.418542753869433]
低リソース言語(LRL)は、限られたデータのために自然言語処理(NLP)において重大な課題に直面している。
現在の最先端の大規模言語モデル(LLM)は、まだLRLと競合している。
mBERTやXLM-Rのような小さなマルチリンガルモデル(mLM)は、トレーニングデータサイズに適合する能力が向上するため、より有望である。
論文 参考訳(メタデータ) (2025-02-14T13:10:39Z) - Transducer-Llama: Integrating LLMs into Streamable Transducer-based Speech Recognition [26.79555533538622]
本稿では,大規模言語モデル(LLM)をFactized Transducer(FT)モデルに統合する新しいモデルアーキテクチャであるTransducer-Llamaを提案する。
提案されたストリーミングTransducer-Llamaアプローチは、強いFTベースラインに17%の相対的なWER削減(WERR)、RNN-Tベースラインに32%のWERRを与えた。
論文 参考訳(メタデータ) (2024-12-21T03:35:49Z) - DLP-LoRA: Efficient Task-Specific LoRA Fusion with a Dynamic, Lightweight Plugin for Large Language Models [10.179598253424103]
大規模言語モデル(LLM)は様々なタスクで堅牢なパフォーマンスを実現していますが、これらのモデルを特定のドメイン向けに微調整することはリソース集約的です。
5Mパラメータしか持たないミニMLPモジュールを提案し、トップpサンプリング戦略を用いて文レベルで複数のLoRAを動的に融合する。
このアプローチは、並列計算を利用することで、単一のLoRA推論の2倍未満まで推論時間を短縮する。
論文 参考訳(メタデータ) (2024-10-02T12:45:52Z) - Minor SFT loss for LLM fine-tune to increase performance and reduce model deviation [9.506166330956082]
最適化されたモデルと元のモデルとの差分を測定するためのSFTのトレーニング指標と、トレーニングの有効性を高めることができる損失関数MinorSFTを提案する。
本稿では,DPO と MinorDPO の知見を得て,最適化モデルとオリジナルモデルとの差分を測定するための SFT のトレーニング指標と,トレーニングの有効性を高めることができる損失関数 MinorSFT を提案する。
論文 参考訳(メタデータ) (2024-08-20T08:32:44Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
事前訓練された大規模言語モデル(LLM)は、自然言語命令に対する応答性を改善するために微調整が必要である。
FedKSeedは、ランダムシードの有限セットによるゼロ階最適化を採用している。
サーバとクライアント間の通信要求を大幅に減らし、ランダムなシードをわずかに減らします。
論文 参考訳(メタデータ) (2023-12-11T13:03:21Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large
Language Models [77.2078051555533]
大規模言語モデル(LLM)の有効なVL適応のための,新規で安価なソリューションを提案する。
画像エンコーダとLLMを接続するために大きなニューラルネットワークを使用する代わりに、MMAは軽量モジュール、すなわちアダプタを採用する。
MMAはまた、LLMがシングルモードとマルチモードの命令を自動シフトするのを助けるルーティングアルゴリズムも備えている。
論文 参考訳(メタデータ) (2023-05-24T11:06:15Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。