論文の概要: DSL-FIQA: Assessing Facial Image Quality via Dual-Set Degradation Learning and Landmark-Guided Transformer
- arxiv url: http://arxiv.org/abs/2406.09622v1
- Date: Thu, 13 Jun 2024 23:11:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 17:05:01.893932
- Title: DSL-FIQA: Assessing Facial Image Quality via Dual-Set Degradation Learning and Landmark-Guided Transformer
- Title(参考訳): DSL-FIQA:デュアルセット劣化学習とランドマーク誘導変換器による顔画像品質の評価
- Authors: Wei-Ting Chen, Gurunandan Krishnan, Qiang Gao, Sy-Yen Kuo, Sizhuo Ma, Jian Wang,
- Abstract要約: Generic Face Image Quality Assessment (GFIQA) は、顔画像の知覚的品質を評価する。
本稿では,GFIQAのトランスフォーマーに基づく新しい手法を提案する。
- 参考スコア(独自算出の注目度): 23.70791030264281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generic Face Image Quality Assessment (GFIQA) evaluates the perceptual quality of facial images, which is crucial in improving image restoration algorithms and selecting high-quality face images for downstream tasks. We present a novel transformer-based method for GFIQA, which is aided by two unique mechanisms. First, a Dual-Set Degradation Representation Learning (DSL) mechanism uses facial images with both synthetic and real degradations to decouple degradation from content, ensuring generalizability to real-world scenarios. This self-supervised method learns degradation features on a global scale, providing a robust alternative to conventional methods that use local patch information in degradation learning. Second, our transformer leverages facial landmarks to emphasize visually salient parts of a face image in evaluating its perceptual quality. We also introduce a balanced and diverse Comprehensive Generic Face IQA (CGFIQA-40k) dataset of 40K images carefully designed to overcome the biases, in particular the imbalances in skin tone and gender representation, in existing datasets. Extensive analysis and evaluation demonstrate the robustness of our method, marking a significant improvement over prior methods.
- Abstract(参考訳): Generic Face Image Quality Assessment (GFIQA) は、画像復元アルゴリズムの改善と下流タスクのための高品質な顔画像の選択に不可欠である顔画像の知覚品質を評価する。
本稿では,GFIQAのトランスフォーマーに基づく新しい手法を提案する。
まず、Dual-Set Degradation Representation Learning(DSL)メカニズムは、合成画像と実際の劣化画像の両方を用いて、コンテンツから劣化を分離し、現実のシナリオへの一般化性を確保する。
この自己教師型手法はグローバルスケールで劣化特性を学習し、分解学習に局所パッチ情報を使用する従来の方法に代わる堅牢な代替手段を提供する。
第二に、我々のトランスフォーマーは、顔のランドマークを活用して、その知覚的品質を評価する際に、顔画像の視覚的に健全な部分を強調する。
また、既存のデータセットにおいて、40K画像のバランスよく多様な包括的顔IQA(CGFIQA-40k)データセットを導入し、特に肌の色調と性別表現の不均衡を克服する。
大規模解析と評価により,提案手法のロバスト性を実証し,従来の手法よりも大幅に改善したことを示す。
関連論文リスト
- Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
顔スワップ法における品質測定の基準は、操作された画像とソース画像の間のいくつかの距離に依存する。
顔スワップ用に設計された新しい非参照画像品質評価法(NR-IQA)を提案する。
論文 参考訳(メタデータ) (2024-06-04T01:36:29Z) - Dual-Branch Network for Portrait Image Quality Assessment [76.27716058987251]
ポートレート画像品質評価のためのデュアルブランチネットワーク(PIQA)を提案する。
我々は2つのバックボーンネットワーク(textiti.e., Swin Transformer-B)を使用して、肖像画全体と顔画像から高品質な特徴を抽出する。
我々は、画像シーンの分類と品質評価モデルであるLIQEを利用して、品質認識とシーン固有の特徴を補助的特徴として捉えている。
論文 参考訳(メタデータ) (2024-05-14T12:43:43Z) - Effective Adapter for Face Recognition in the Wild [72.75516495170199]
私たちは、画像が低品質で現実世界の歪みに悩まされる、野生の顔認識の課題に取り組みます。
従来のアプローチでは、劣化した画像や、顔の復元技術を使って強化された画像を直接訓練するが、効果がないことが証明された。
高品質な顔データセットで訓練された既存の顔認識モデルを強化するための効果的なアダプタを提案する。
論文 参考訳(メタデータ) (2023-12-04T08:55:46Z) - Blind Image Quality Assessment via Transformer Predicted Error Map and
Perceptual Quality Token [19.67014524146261]
近年,非参照画像品質評価(NR-IQA)が注目されている。
予測された客観的誤差マップと知覚的品質トークンを用いたTransformerベースのNR-IQAモデルを提案する。
提案手法は, 実画像データベースと合成画像データベースの両方において, 現在の最先端技術よりも優れている。
論文 参考訳(メタデータ) (2023-05-16T11:17:54Z) - Helping Visually Impaired People Take Better Quality Pictures [52.03016269364854]
我々は、視覚障害者が共通の技術的歪みの発生を最小限に抑えるためのツールを開発する。
また、ユーザによる品質問題の緩和を支援する、プロトタイプのフィードバックシステムも作成しています。
論文 参考訳(メタデータ) (2023-05-14T04:37:53Z) - Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild [38.197794061203055]
教師なし環境で高レベルのコンテンツと低レベルの画像品質特徴を学習するために、2つの異なるエンコーダを訓練するためのMixture of Expertsアプローチを提案する。
本稿では,Re-IQAフレームワークから得られた高次・低次画像表現を,線形回帰モデルをトレーニングするために展開する。
本手法は,大規模画像品質評価データベース上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-04-02T05:06:51Z) - MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer
with Multi-Stage Fusion [8.338999282303755]
本稿では,Swin Transformerに基づく新しいアルゴリズムを提案する。
ローカル機能とグローバル機能の両方から情報を集約して、品質をより正確に予測する。
NTIRE 2022 Perceptual Image Quality Assessment Challengeのノーレファレンストラックで2位。
論文 参考訳(メタデータ) (2022-05-20T11:34:35Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
我々は,テキスト化BIQAモデルを開発し,それを合成的および現実的歪みの両方で訓練するアプローチを提案する。
我々は、多数の画像ペアに対してBIQAのためのディープニューラルネットワークを最適化するために、忠実度損失を用いる。
6つのIQAデータベースの実験は、実験室と野生動物における画像品質を盲目的に評価する学習手法の可能性を示唆している。
論文 参考訳(メタデータ) (2020-05-28T13:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。