A Multivocal Review of MLOps Practices, Challenges and Open Issues
- URL: http://arxiv.org/abs/2406.09737v1
- Date: Fri, 14 Jun 2024 05:47:13 GMT
- Title: A Multivocal Review of MLOps Practices, Challenges and Open Issues
- Authors: Beyza Eken, Samodha Pallewatta, Nguyen Khoi Tran, Ayse Tosun, Muhammad Ali Babar,
- Abstract summary: We conduct a Multivocal Literature Review (MLR) of 150 relevant academic studies and 48 gray literature to provide a comprehensive body of knowledge on MLOps.
We identify the emerging MLOps practices, adoption challenges and solutions related to various areas, including development and operation of complex pipelines, managing production at scale, managing artifacts, and ensuring quality, security, governance, and ethical aspects.
- Score: 9.227450931458907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing trend of Machine Learning (ML) enabled software applications, the paradigm of ML Operations (MLOps) has gained tremendous attention of researchers and practitioners. MLOps encompasses the practices and technologies for streamlining the resources and monitoring needs of operationalizing ML models. Software development practitioners need access to the detailed and easily understandable knowledge of MLOps workflows, practices, challenges and solutions to effectively and efficiently support the adoption of MLOps. Whilst the academic and industry literature on the MLOps has been growing rapidly, there have been relatively a few attempts at systematically synthesizing and analyzing the vast amount of existing literature of MLOps for improving ease of access and understanding. We conducted a Multivocal Literature Review (MLR) of 150 relevant academic studies and 48 gray literature to provide a comprehensive body of knowledge on MLOps. Through this MLR, we identified the emerging MLOps practices, adoption challenges and solutions related to various areas, including development and operation of complex pipelines, managing production at scale, managing artifacts, and ensuring quality, security, governance, and ethical aspects. We also report the socio-technical aspect of MLOps relating to diverse roles involved and collaboration practices across them through the MLOps lifecycle. We assert that this MLR provides valuable insights to researchers and practitioners seeking to navigate the rapidly evolving landscape of MLOps. We also identify the open issues that need to be addressed in order to advance the current state-of-the-art of MLOps.
Related papers
- A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
Large language models (MLLMs) integrate text, images, video and audio to enable AI systems for cross-modal understanding and generation.
Book examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning.
Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights.
arXiv Detail & Related papers (2024-11-09T20:56:23Z) - Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Surveying the MLLM Landscape: A Meta-Review of Current Surveys [17.372501468675303]
Multimodal Large Language Models (MLLMs) have become a transformative force in the field of artificial intelligence.
This survey aims to provide a systematic review of benchmark tests and evaluation methods for MLLMs.
arXiv Detail & Related papers (2024-09-17T14:35:38Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - Machine Learning Operations (MLOps): Overview, Definition, and
Architecture [0.0]
The paradigm of Machine Learning Operations (MLOps) addresses this issue.
MLOps is still a vague term and its consequences for researchers and professionals are ambiguous.
We provide an aggregated overview of the necessary components, and roles, as well as the associated architecture and principles.
arXiv Detail & Related papers (2022-05-04T19:38:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.