On the Encoding of Gender in Transformer-based ASR Representations
- URL: http://arxiv.org/abs/2406.09855v1
- Date: Fri, 14 Jun 2024 09:10:24 GMT
- Title: On the Encoding of Gender in Transformer-based ASR Representations
- Authors: Aravind Krishnan, Badr M. Abdullah, Dietrich Klakow,
- Abstract summary: This work investigates the encoding and utilization of gender in the latent representations of two ASR models, Wav2Vec2 and HuBERT.
Our analysis reveals a concentration of gender information within the first and last frames in the final layers, explaining the ease of erasing gender in these layers.
- Score: 18.08250235967961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While existing literature relies on performance differences to uncover gender biases in ASR models, a deeper analysis is essential to understand how gender is encoded and utilized during transcript generation. This work investigates the encoding and utilization of gender in the latent representations of two transformer-based ASR models, Wav2Vec2 and HuBERT. Using linear erasure, we demonstrate the feasibility of removing gender information from each layer of an ASR model and show that such an intervention has minimal impacts on the ASR performance. Additionally, our analysis reveals a concentration of gender information within the first and last frames in the final layers, explaining the ease of erasing gender in these layers. Our findings suggest the prospect of creating gender-neutral embeddings that can be integrated into ASR frameworks without compromising their efficacy.
Related papers
- Exploring Gender Disparities in Automatic Speech Recognition Technology [22.729651340592586]
We analyze how performance varies across different gender representations in training data.
Our findings suggest a complex interplay between the gender ratio in training data and ASR performance.
arXiv Detail & Related papers (2025-02-25T18:29:38Z) - On the "Illusion" of Gender Bias in Face Recognition: Explaining the Fairness Issue Through Non-demographic Attributes [7.602456562464879]
Face recognition systems exhibit significant accuracy differences based on the user's gender.
We propose a toolchain to effectively decorrelate and aggregate facial attributes to enable a less-biased gender analysis.
Experiments show that the gender gap vanishes when images of male and female subjects share specific attributes.
arXiv Detail & Related papers (2025-01-21T10:21:19Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.
GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - Diminishing Stereotype Bias in Image Generation Model using Reinforcemenlent Learning Feedback [3.406797377411835]
This study addresses gender bias in image generation models using Reinforcement Learning from Artificial Intelligence Feedback (RLAIF)
By employing a pretrained stable diffusion model and a highly accurate gender classification Transformer, the research introduces two reward functions: Rshift for shifting gender imbalances, and Rbalance for achieving and maintaining gender balance.
Experiments demonstrate the effectiveness of this approach in mitigating bias without compromising image quality or requiring additional data or prompt modifications.
arXiv Detail & Related papers (2024-06-27T17:18:58Z) - Leveraging Synthetic Data for Generalizable and Fair Facial Action Unit Detection [9.404202619102943]
We propose to use synthetically generated data and multi-source domain adaptation (MSDA) to address the problems of the scarcity of labeled data and the diversity of subjects.
Specifically, we propose to generate a diverse dataset through synthetic facial expression re-targeting.
To further improve gender fairness, PM2 matches the features of the real data with a female and a male synthetic image.
arXiv Detail & Related papers (2024-03-15T23:50:18Z) - The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender
Characterisation in 55 Languages [51.2321117760104]
This paper describes the Gender-GAP Pipeline, an automatic pipeline to characterize gender representation in large-scale datasets for 55 languages.
The pipeline uses a multilingual lexicon of gendered person-nouns to quantify the gender representation in text.
We showcase it to report gender representation in WMT training data and development data for the News task, confirming that current data is skewed towards masculine representation.
arXiv Detail & Related papers (2023-08-31T17:20:50Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Gender Bias in Transformer Models: A comprehensive survey [1.1011268090482573]
Gender bias in artificial intelligence (AI) has emerged as a pressing concern with profound implications for individuals' lives.
This paper presents a comprehensive survey that explores gender bias in Transformer models from a linguistic perspective.
arXiv Detail & Related papers (2023-06-18T11:40:47Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Word Embeddings via Causal Inference: Gender Bias Reducing and Semantic
Information Preserving [3.114945725130788]
We propose a novel methodology that leverages a causal inference framework to effectively remove gender bias.
Our comprehensive experiments show that the proposed method achieves state-of-the-art results in gender-debiasing tasks.
arXiv Detail & Related papers (2021-12-09T19:57:22Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
We propose the Gender Stereotype Reinforcement (GSR) measure, which quantifies the tendency of a Search Engines to support gender stereotypes.
GSR is the first specifically tailored measure for Information Retrieval, capable of quantifying representational harms.
arXiv Detail & Related papers (2020-09-02T20:45:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.