What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
- URL: http://arxiv.org/abs/2406.09908v1
- Date: Fri, 14 Jun 2024 10:36:26 GMT
- Title: What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
- Authors: Weijie Tu, Weijian Deng, Liang Zheng, Tom Gedeon,
- Abstract summary: We introduce a new measure called Softmax Correlation (SoftmaxCorr)
It calculates the cosine similarity between a class-class correlation matrix and a predefined reference matrix.
A high resemblance of predictions to the reference matrix signals that the model delivers confident and uniform predictions.
- Score: 19.939014335673633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work aims to develop a measure that can accurately rank the performance of various classifiers when they are tested on unlabeled data from out-of-distribution (OOD) distributions. We commence by demonstrating that conventional uncertainty metrics, notably the maximum Softmax prediction probability, possess inherent utility in forecasting model generalization across certain OOD contexts. Building on this insight, we introduce a new measure called Softmax Correlation (SoftmaxCorr). It calculates the cosine similarity between a class-class correlation matrix, constructed from Softmax output vectors across an unlabeled test dataset, and a predefined reference matrix that embodies ideal class correlations. A high resemblance of predictions to the reference matrix signals that the model delivers confident and uniform predictions across all categories, reflecting minimal uncertainty and confusion. Through rigorous evaluation across a suite of datasets, including ImageNet, CIFAR-10, and WILDS, we affirm the predictive validity of SoftmaxCorr in accurately forecasting model performance within both in-distribution (ID) and OOD settings. Furthermore, we discuss the limitations of our proposed measure and suggest avenues for future research.
Related papers
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Probabilistic Scores of Classifiers, Calibration is not Enough [0.32985979395737786]
In binary classification tasks, accurate representation of probabilistic predictions is essential for various real-world applications.
In this study, we highlight approaches that prioritize the alignment between predicted scores and true probability distributions.
Our findings reveal limitations in traditional calibration metrics, which could undermine the reliability of predictive models for critical decision-making.
arXiv Detail & Related papers (2024-08-06T19:53:00Z) - Improving Explainability of Softmax Classifiers Using a Prototype-Based Joint Embedding Method [0.0]
We propose a prototype-based approach for improving explainability of softmax classifiers.
By modifying the model architecture and training, we acquire the ability to sample for prototypical examples that contributed to the prediction.
We obtain a metric for uncertainty that is better able to detect out of distribution data than softmax confidence.
arXiv Detail & Related papers (2024-07-02T13:59:09Z) - Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias [5.698050337128548]
Self-training is a well-known approach for semi-supervised learning. It consists of iteratively assigning pseudo-labels to unlabeled data for which the model is confident and treating them as labeled examples.
For neural networks, softmax prediction probabilities are often used as a confidence measure, although they are known to be overconfident, even for wrong predictions.
We propose a novel confidence measure, called $mathcalT$-similarity, built upon the prediction diversity of an ensemble of linear classifiers.
arXiv Detail & Related papers (2023-10-23T11:30:06Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - On the Discrepancy between Density Estimation and Sequence Generation [92.70116082182076]
log-likelihood is highly correlated with BLEU when we consider models within the same family.
We observe no correlation between rankings of models across different families.
arXiv Detail & Related papers (2020-02-17T20:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.