Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm
- URL: http://arxiv.org/abs/2403.16446v1
- Date: Mon, 25 Mar 2024 06:17:54 GMT
- Title: Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm
- Authors: Lei Liu, Xiaoyan Yang, Fangzhou Li, Chenfei Chi, Yue Shen, Shiwei Lyu Ming Zhang, Xiaowei Ma, Xiangguo Lyu, Liya Ma, Zhiqiang Zhang, Wei Xue, Yiran Huang, Jinjie Gu,
- Abstract summary: Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis.
We propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services.
- Score: 15.627870862369784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis, owing to their unprecedented performance in modelling natural language. Ensuring the safe and reliable clinical applications, the evaluation of LLMs indeed becomes critical for better mitigating the potential risks, e.g., hallucinations. However, current evaluation methods heavily rely on labor-intensive human participation to achieve human-preferred judgements. To overcome this challenge, we propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services, e.g., disease diagnosis and treatment. The evaluation paradigm contains three basic elements: metric, data, and algorithm. Specifically, inspired by professional clinical practice pathways, we formulate a LLM-specific clinical pathway (LCP) to define the clinical capabilities that a doctor agent should possess. Then, Standardized Patients (SPs) from the medical education are introduced as the guideline for collecting medical data for evaluation, which can well ensure the completeness of the evaluation procedure. Leveraging these steps, we develop a multi-agent framework to simulate the interactive environment between SPs and a doctor agent, which is equipped with a Retrieval-Augmented Evaluation (RAE) to determine whether the behaviors of a doctor agent are in accordance with LCP. The above paradigm can be extended to any similar clinical scenarios to automatically evaluate the LLMs' medical capabilities. Applying such paradigm, we construct an evaluation benchmark in the field of urology, including a LCP, a SPs dataset, and an automated RAE. Extensive experiments are conducted to demonstrate the effectiveness of the proposed approach, providing more insights for LLMs' safe and reliable deployments in clinical practice.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
Large language models (LLMs) offer a new approach to assessing complex communication metrics.
LLMs offer the potential to advance the field through integration into passive sensing and just-in-time intervention systems.
This study explores LLMs as evaluators of palliative care communication quality, leveraging their linguistic, in-context learning, and reasoning capabilities.
arXiv Detail & Related papers (2024-09-23T16:39:12Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
We introduce MEDIC, a framework assessing Large Language Models (LLMs) across five critical dimensions of clinical competence.
We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks.
Results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths.
arXiv Detail & Related papers (2024-09-11T14:44:51Z) - CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making [16.310913127940857]
We introduce CliBench, a novel benchmark developed from the MIMIC IV dataset.
This benchmark offers a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis.
We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making.
arXiv Detail & Related papers (2024-06-14T11:10:17Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Automatic Interactive Evaluation for Large Language Models with State Aware Patient Simulator [21.60103376506254]
Large Language Models (LLMs) have demonstrated remarkable proficiency in human interactions.
This paper introduces the Automated Interactive Evaluation (AIE) framework and the State-Aware Patient Simulator (SAPS)
AIE and SAPS provide a dynamic, realistic platform for assessing LLMs through multi-turn doctor-patient simulations.
arXiv Detail & Related papers (2024-03-13T13:04:58Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
Large language models (LLMs) often suffer from hallucinations, leading to overly confident but incorrect judgments.
This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations.
arXiv Detail & Related papers (2023-09-05T09:24:48Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.