Outlier detection in maritime environments using AIS data and deep recurrent architectures
- URL: http://arxiv.org/abs/2406.09966v1
- Date: Fri, 14 Jun 2024 12:15:15 GMT
- Title: Outlier detection in maritime environments using AIS data and deep recurrent architectures
- Authors: Constantine Maganaris, Eftychios Protopapadakis, Nikolaos Doulamis,
- Abstract summary: We present a methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data.
The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns.
Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns.
- Score: 5.399126243770847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data, is presented in this paper. The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns. Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns of maritime vessels. Specifically, a deep-learning framework, i.e. an encoder-decoder architecture, is trained using the observed motion patterns, enabling the models to learn and predict the expected trajectory, which will be compared to the effective ones. Our models, particularly the bidirectional GRU with recurrent dropouts, showcased superior performance in capturing the temporal dynamics of maritime data, illustrating the potential of deep learning to enhance maritime surveillance capabilities. Our work lays a solid foundation for future research in this domain, highlighting a path toward improved maritime safety through the innovative application of technology.
Related papers
- Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset [3.468621550644668]
The maritime shipping industry is undergoing rapid evolution driven by advancements in computer vision artificial intelligence (AI)
object recognition in maritime environments faces challenges such as light reflection, interference, intense lighting, and various weather conditions.
Existing AI recognition models and datasets have limited suitability for composing autonomous navigation systems.
arXiv Detail & Related papers (2024-07-12T05:48:53Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
We present a systematic framework for training high-fidelity Deep Vision-based coastal flood prediction models in low-data settings.
We also introduce a deep CNN architecture tailored specifically to the coastal flood prediction problem at hand.
The performance of the developed DL models is validated against commonly adopted geostatistical regression methods.
arXiv Detail & Related papers (2024-06-06T19:54:34Z) - A CNN-LSTM Architecture for Marine Vessel Track Association Using
Automatic Identification System (AIS) Data [2.094022863940315]
This study introduces a 1D CNN-LSTM architecture-based framework for track association.
The proposed framework takes the marine vessel's location and motion data collected through the Automatic Identification System (AIS) as input and returns the most likely vessel track as output in real-time.
arXiv Detail & Related papers (2023-03-24T15:26:49Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Deep Learning Methods for Vessel Trajectory Prediction based on
Recurrent Neural Networks [13.193080011901381]
We propose sequence-to-sequence vessel trajectory prediction models based on encoder-decoder recurrent neural networks (RNNs)
The proposed architecture combines Long Short-Term Memory (LSTM) RNNs for sequence modeling to encode the observed data and generate future predictions with different intermediate aggregation layers to capture space-time dependencies in sequential data.
Experimental results on vessel trajectories from an AIS dataset made freely available by the Danish Maritime Authority show the effectiveness of deep-learning methods for trajectory prediction based on sequence-to-sequence neural networks.
arXiv Detail & Related papers (2021-01-07T11:05:47Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.