論文の概要: Details Make a Difference: Object State-Sensitive Neurorobotic Task Planning
- arxiv url: http://arxiv.org/abs/2406.09988v2
- Date: Wed, 16 Oct 2024 14:48:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:39:36.627053
- Title: Details Make a Difference: Object State-Sensitive Neurorobotic Task Planning
- Title(参考訳): 微妙な違い:オブジェクト状態感性ニューロロボティックタスクプランニング
- Authors: Xiaowen Sun, Xufeng Zhao, Jae Hee Lee, Wenhao Lu, Matthias Kerzel, Stefan Wermter,
- Abstract要約: オブジェクトの状態は現在の状態や状態を反映しており、ロボットのタスク計画と操作にとって重要である。
近年,LLM (Large Language Models) とVLM (Vision-Language Models) は,計画生成において顕著な能力を示している。
我々は、事前学習ニューラルネットワークによって強化されたタスク計画エージェントであるObject State-Sensitive Agent (OSSA)を紹介する。
- 参考スコア(独自算出の注目度): 15.03025428687218
- License:
- Abstract: The state of an object reflects its current status or condition and is important for a robot's task planning and manipulation. However, detecting an object's state and generating a state-sensitive plan for robots is challenging. Recently, pre-trained Large Language Models (LLMs) and Vision-Language Models (VLMs) have shown impressive capabilities in generating plans. However, to the best of our knowledge, there is hardly any investigation on whether LLMs or VLMs can also generate object state-sensitive plans. To study this, we introduce an Object State-Sensitive Agent (OSSA), a task-planning agent empowered by pre-trained neural networks. We propose two methods for OSSA: (i) a modular model consisting of a pre-trained vision processing module (dense captioning model, DCM) and a natural language processing model (LLM), and (ii) a monolithic model consisting only of a VLM. To quantitatively evaluate the performances of the two methods, we use tabletop scenarios where the task is to clear the table. We contribute a multimodal benchmark dataset that takes object states into consideration. Our results show that both methods can be used for object state-sensitive tasks, but the monolithic approach outperforms the modular approach. The code for OSSA is available at https://github.com/Xiao-wen-Sun/OSSA
- Abstract(参考訳): オブジェクトの状態は現在の状態や状態を反映しており、ロボットのタスク計画と操作にとって重要である。
しかし,物体の状態を検出し,ロボットの状態に敏感な計画を生成することは困難である。
近年,LLM (Large Language Models) とVLM (Vision-Language Models) は,計画生成において顕著な能力を示している。
しかしながら、我々の知る限り、LLMやVLMもオブジェクトの状態に敏感な計画を生成することができるかどうかについては、ほとんど調査されていない。
そこで本研究では,事前学習ニューラルネットワークによるタスク計画エージェントであるObject State-Sensitive Agent (OSSA)を紹介する。
我々はOSSAの2つの方法を提案する。
(i)事前訓練された視覚処理モジュール(DCM)と自然言語処理モデル(LLM)からなるモジュールモデル
(ii)VLMのみからなるモノリシックモデル。
2つの手法の性能を定量的に評価するために、タスクがテーブルをクリアするテーブルトップシナリオを使用する。
オブジェクトの状態を考慮したマルチモーダルベンチマークデータセットをコントリビュートする。
その結果、どちらの手法もオブジェクトの状態に敏感なタスクに使用できることがわかったが、モノリシックなアプローチはモジュラーアプローチよりも優れていた。
OSSAのコードはhttps://github.com/Xiao-wen-Sun/OSSAで公開されている。
関連論文リスト
- Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction [19.59151245929067]
エージェントにオブジェクト中心のマッピング(アイテムとその属性のセットを記述する)を与えることで、より効率的な学習が可能になるかどうかを検討する。
この問題は、ピクセルへの高レベルの状態抽象化でアイテムをモデル化することで、階層的に最もよく解決されている。
我々はこの手法を用いて、差別的な世界モデルを学ぶ完全モデルベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-21T17:59:31Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
視覚言語モデル(VLM)は、状態情報を視覚的テキストのプロンプトとして処理し、テキスト内のポリシー決定に応答することができる。
LLaRA:Large Language and Robotics Assistantは,ロボットの行動ポリシーを会話として定式化するフレームワークである。
論文 参考訳(メタデータ) (2024-06-28T17:59:12Z) - TaskCLIP: Extend Large Vision-Language Model for Task Oriented Object Detection [23.73648235283315]
タスク指向オブジェクト検出は、特定のタスクを達成するのに適したオブジェクトを見つけることを目的としている。
最近のソリューションは主にオールインワンモデルです。
汎用オブジェクト検出とタスク誘導オブジェクト選択からなるより自然な2段階設計であるTaskCLIPを提案する。
論文 参考訳(メタデータ) (2024-03-12T22:33:02Z) - LLMs for Robotic Object Disambiguation [21.101902684740796]
本研究は,LLMが複雑な意思決定課題の解決に適していることを明らかにする。
我々の研究の重要な焦点は、LLMのオブジェクトの曖昧化能力である。
我々は,LLMのあいまいなクエリを提示する能力を改善するために,数発のプロンプトエンジニアリングシステムを開発した。
論文 参考訳(メタデータ) (2024-01-07T04:46:23Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - LLM-State: Open World State Representation for Long-horizon Task Planning with Large Language Model [25.29170146456063]
本研究では,Large Language Model (LLM) を用いたオープンワールド家庭環境における長期タスクプランニングの問題に対処する。
既存の作業は、キーオブジェクトと属性を明示的に追跡することができない。
オブジェクト属性の連続的な拡張と更新を提供するオープンステート表現を提案する。
論文 参考訳(メタデータ) (2023-11-29T07:23:22Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z) - Learning Models as Functionals of Signed-Distance Fields for
Manipulation Planning [51.74463056899926]
本研究では,シーン内のオブジェクトを表す符号付き距離場の目的を学習する,最適化に基づく操作計画フレームワークを提案する。
オブジェクトを符号付き距離場として表現することは、ポイントクラウドや占有率の表現よりも高い精度で、様々なモデルの学習と表現を可能にする。
論文 参考訳(メタデータ) (2021-10-02T12:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。