Beyond Slow Signs in High-fidelity Model Extraction
- URL: http://arxiv.org/abs/2406.10011v1
- Date: Fri, 14 Jun 2024 13:24:07 GMT
- Title: Beyond Slow Signs in High-fidelity Model Extraction
- Authors: Hanna Foerster, Robert Mullins, Ilia Shumailov, Jamie Hayes,
- Abstract summary: Deep neural networks, costly to train and rich in intellectual property value, are increasingly threatened by model extraction attacks.
Previous attacks have succeeded in reverse-engineering model parameters up to a precision of float64 for models trained on random data with at most three hidden layers.
We introduce a unified optimisation that integrates previous methods and reveal that computational tools can significantly influence performance.
- Score: 18.330719989672442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks, costly to train and rich in intellectual property value, are increasingly threatened by model extraction attacks that compromise their confidentiality. Previous attacks have succeeded in reverse-engineering model parameters up to a precision of float64 for models trained on random data with at most three hidden layers using cryptanalytical techniques. However, the process was identified to be very time consuming and not feasible for larger and deeper models trained on standard benchmarks. Our study evaluates the feasibility of parameter extraction methods of Carlini et al. [1] further enhanced by Canales-Mart\'inez et al. [2] for models trained on standard benchmarks. We introduce a unified codebase that integrates previous methods and reveal that computational tools can significantly influence performance. We develop further optimisations to the end-to-end attack and improve the efficiency of extracting weight signs by up to 14.8 times compared to former methods through the identification of easier and harder to extract neurons. Contrary to prior assumptions, we identify extraction of weights, not extraction of weight signs, as the critical bottleneck. With our improvements, a 16,721 parameter model with 2 hidden layers trained on MNIST is extracted within only 98 minutes compared to at least 150 minutes previously. Finally, addressing methodological deficiencies observed in previous studies, we propose new ways of robust benchmarking for future model extraction attacks.
Related papers
- Wasserstein distributional adversarial training for deep neural networks [4.0984142455934345]
We propose methods to train against distributional attack threats.
We introduce an efficient fine-tuning method which can be deployed on a previously trained model.
We test our methods on a range of pre-trained models on RobustBench.
arXiv Detail & Related papers (2025-02-13T14:18:41Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Calibrating the Rigged Lottery: Making All Tickets Reliable [14.353428281239665]
We propose a new sparse training method to produce sparse models with improved confidence calibration.
Our method simultaneously maintains or even improves accuracy with only a slight increase in computation and storage burden.
arXiv Detail & Related papers (2023-02-18T15:53:55Z) - Careful What You Wish For: on the Extraction of Adversarially Trained
Models [2.707154152696381]
Recent attacks on Machine Learning (ML) models pose several security and privacy threats.
We propose a framework to assess extraction attacks on adversarially trained models.
We show that adversarially trained models are more vulnerable to extraction attacks than models obtained under natural training circumstances.
arXiv Detail & Related papers (2022-07-21T16:04:37Z) - Deep vs. Shallow Learning: A Benchmark Study in Low Magnitude Earthquake
Detection [0.0]
We build on an existing logistic regression model by adding four further features using elastic net driven data mining.
We evaluate the performance of the augmented logistic regression model relative to a deep (CNN) model, pre-trained on the Groningen data, on progressively increasing noise-to-signal ratios.
We discover that, for each ratio, our logistic regression model correctly detects every earthquake, while the deep model fails to detect nearly 20 % of seismic events.
arXiv Detail & Related papers (2022-05-01T17:59:18Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Provable Benefits of Overparameterization in Model Compression: From
Double Descent to Pruning Neural Networks [38.153825455980645]
Recent empirical evidence indicates that the practice of overization not only benefits training large models, but also assists - perhaps counterintuitively - building lightweight models.
This paper sheds light on these empirical findings by theoretically characterizing the high-dimensional toolsets of model pruning.
We analytically identify regimes in which, even if the location of the most informative features is known, we are better off fitting a large model and then pruning.
arXiv Detail & Related papers (2020-12-16T05:13:30Z) - Learnable Boundary Guided Adversarial Training [66.57846365425598]
We use the model logits from one clean model to guide learning of another one robust model.
We achieve new state-of-the-art robustness on CIFAR-100 without additional real or synthetic data.
arXiv Detail & Related papers (2020-11-23T01:36:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.