Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration
- URL: http://arxiv.org/abs/2406.10017v1
- Date: Fri, 14 Jun 2024 13:27:56 GMT
- Title: Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration
- Authors: Gyusang Cho, Chan-Hyun Youn,
- Abstract summary: calibration aims to align confidence with accuracy to enhance the reliability of predictions.
Several solutions based on calibration maps have been proposed to address the problem.
We offer an algorithm that transforms the weights of the last layer of the classifier, distinct from the calibration-map-based approach.
- Score: 2.81765024056154
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: After the revelation that neural networks tend to produce overconfident predictions, the problem of calibration, which aims to align confidence with accuracy to enhance the reliability of predictions, has gained significant importance. Several solutions based on calibration maps have been proposed to address the problem of recalibrating a trained classifier using additional datasets. In this paper, we offer an algorithm that transforms the weights of the last layer of the classifier, distinct from the calibration-map-based approach. We concentrate on the geometry of the final linear layer, specifically its angular aspect, and adjust the weights of the corresponding layer. We name the method Tilt and Average(\textsc{Tna}), and validate the calibration effect empirically and theoretically. Through this, we demonstrate that our approach, in addition to the existing calibration-map-based techniques, can yield improved calibration performance. Code available : https://github.com/GYYYYYUUUUU/TNA_Angular_Scaling.
Related papers
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
arXiv Detail & Related papers (2024-10-16T06:44:35Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error [46.12703434199988]
We introduce a new differentiable surrogate for expected calibration error (DECE) that allows calibration quality to be directly optimised.
We also propose a meta-learning framework that uses DECE to optimise for validation set calibration.
arXiv Detail & Related papers (2021-06-17T15:47:50Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Post-hoc Uncertainty Calibration for Domain Drift Scenarios [46.88826364244423]
We show that existing post-hoc calibration methods yield highly over-confident predictions under domain shift.
We introduce a simple strategy where perturbations are applied to samples in the validation set before performing the post-hoc calibration step.
arXiv Detail & Related papers (2020-12-20T18:21:13Z) - Multi-Class Uncertainty Calibration via Mutual Information
Maximization-based Binning [8.780958735684958]
Post-hoc multi-class calibration is a common approach for providing confidence estimates of deep neural network predictions.
Recent work has shown that widely used scaling methods underestimate their calibration error.
We propose a shared class-wise (sCW) calibration strategy, sharing one calibrator among similar classes.
arXiv Detail & Related papers (2020-06-23T15:31:59Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z) - Intra Order-preserving Functions for Calibration of Multi-Class Neural
Networks [54.23874144090228]
A common approach is to learn a post-hoc calibration function that transforms the output of the original network into calibrated confidence scores.
Previous post-hoc calibration techniques work only with simple calibration functions.
We propose a new neural network architecture that represents a class of intra order-preserving functions.
arXiv Detail & Related papers (2020-03-15T12:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.