論文の概要: Comparison of fine-tuning strategies for transfer learning in medical image classification
- arxiv url: http://arxiv.org/abs/2406.10050v1
- Date: Fri, 14 Jun 2024 14:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:25:54.932449
- Title: Comparison of fine-tuning strategies for transfer learning in medical image classification
- Title(参考訳): 医用画像分類における転写学習のための微調整戦略の比較
- Authors: Ana Davila, Jacinto Colan, Yasuhisa Hasegawa,
- Abstract要約: 先進的な事前訓練モデルが利用可能であるにもかかわらず、医用画像への直接の応用は、医学データ特有の特徴のため、しばしば不足する。
本研究は,医療画像領域の領域にまたがる事前学習モデルに適用した各種微調整法の性能に関する総合的な分析を行う。
- 参考スコア(独自算出の注目度): 2.271776292902496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of medical imaging and machine learning, one of the most pressing challenges is the effective adaptation of pre-trained models to specialized medical contexts. Despite the availability of advanced pre-trained models, their direct application to the highly specialized and diverse field of medical imaging often falls short due to the unique characteristics of medical data. This study provides a comprehensive analysis on the performance of various fine-tuning methods applied to pre-trained models across a spectrum of medical imaging domains, including X-ray, MRI, Histology, Dermoscopy, and Endoscopic surgery. We evaluated eight fine-tuning strategies, including standard techniques such as fine-tuning all layers or fine-tuning only the classifier layers, alongside methods such as gradually unfreezing layers, regularization based fine-tuning and adaptive learning rates. We selected three well-established CNN architectures (ResNet-50, DenseNet-121, and VGG-19) to cover a range of learning and feature extraction scenarios. Although our results indicate that the efficacy of these fine-tuning methods significantly varies depending on both the architecture and the medical imaging type, strategies such as combining Linear Probing with Full Fine-tuning resulted in notable improvements in over 50% of the evaluated cases, demonstrating general effectiveness across medical domains. Moreover, Auto-RGN, which dynamically adjusts learning rates, led to performance enhancements of up to 11% for specific modalities. Additionally, the DenseNet architecture showed more pronounced benefits from alternative fine-tuning approaches compared to traditional full fine-tuning. This work not only provides valuable insights for optimizing pre-trained models in medical image analysis but also suggests the potential for future research into more advanced architectures and fine-tuning methods.
- Abstract(参考訳): 医療画像と機械学習の文脈において、最も強い課題の1つは、訓練済みのモデルを専門的な医学的文脈に効果的に適応させることである。
先進的な事前訓練モデルが利用可能であるにもかかわらず、非常に専門的で多様な医療画像への直接的な適用は、医学データ特有の特徴のため、しばしば不足する。
本研究は、X線、MRI、組織学、皮膚内視鏡、内視鏡手術を含む、様々な領域の医療画像領域において、事前訓練されたモデルに適用された様々な微調整法の性能に関する包括的分析を提供する。
我々は,すべての層を微調整する,あるいは分類器層のみを微調整するといった標準的な手法を含む8つの微調整戦略を,徐々に凍結する,正規化に基づく微調整,適応学習率などの手法とともに評価した。
ResNet-50、DenseNet-121、VGG-19の3つの確立されたCNNアーキテクチャを選択し、さまざまな学習シナリオと特徴抽出シナリオをカバーした。
提案手法の有効性は, 建築や医用画像の種類によって大きく異なるが, リニア・プローブとフル・ファイン・チューニングを組み合わせることで, 評価症例の50%以上において顕著な改善がみられ, 医用領域全体での総合的な効果が示された。
さらに,学習速度を動的に調整するAuto-RGNは,特定のモダリティに対して最大11%の性能向上を実現した。
さらに、DenseNetアーキテクチャは、従来のフルチューニングに比べて、代替のファインチューニングアプローチの利点が顕著であった。
この研究は、医学画像解析における事前学習モデルの最適化のための貴重な洞察を提供するだけでなく、より高度なアーキテクチャや微調整手法の研究の可能性も示唆している。
関連論文リスト
- Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
本稿では,種々の医用画像データセット間での伝達学習を伴う,事前訓練された深部畳み込みニューラルネットワークの使用の複雑さについて検討する。
固定特徴抽出器として事前訓練されたモデルを使用することで,データセットに関係なく性能が低下することを示す。
また、より深く複雑なアーキテクチャが必ずしも最高のパフォーマンスをもたらすとは限らないことも判明した。
論文 参考訳(メタデータ) (2024-08-30T04:51:19Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
公開されているFIVESファウンダスイメージデータセット上で,5つの公開モデルをトレーニングし,評価する。
画像の品質がセグメンテーションの結果を決定する重要な要因であることがわかった。
論文 参考訳(メタデータ) (2024-06-21T09:12:34Z) - How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with Segment Anything Model [12.051904886550956]
この研究は、様々なバックボーンアーキテクチャ、モデルコンポーネント、および18の組み合わせにわたる微調整アルゴリズムによる既存の微調整戦略をまとめたものである。
一般的な放射線学のモダリティを網羅した17のデータセットで評価した。
コードとMRI特有の微調整ウェイトをリリースし、元のSAMよりも一貫して優れた性能を得た。
論文 参考訳(メタデータ) (2024-04-15T17:31:32Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - DiCoM -- Diverse Concept Modeling towards Enhancing Generalizability in Chest X-Ray Studies [6.83819481805979]
胸部X線(胸部X線、CXR)は、広く用いられている画像モダリティである。
自己指導型プレトレーニングは、多くの下流視覚タスクにおいて教師付きプレトレーニングよりも優れていることが証明されている。
本稿では,新しい自己教師型トレーニングパラダイムであるDiCoMについて紹介する。
論文 参考訳(メタデータ) (2024-02-22T20:51:37Z) - Learned Image resizing with efficient training (LRET) facilitates
improved performance of large-scale digital histopathology image
classification models [0.0]
組織学的検査は腫瘍学の研究と診断において重要な役割を担っている。
深層畳み込みニューラルネットワーク(DCNN)のトレーニングへの最近のアプローチは、最適下モデルの性能をもたらす。
本稿では,従来の病理組織学分類モデルトレーニングの主な限界に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-19T23:45:47Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。