論文の概要: Localizing Events in Videos with Multimodal Queries
- arxiv url: http://arxiv.org/abs/2406.10079v3
- Date: Thu, 21 Nov 2024 17:58:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:16:53.516744
- Title: Localizing Events in Videos with Multimodal Queries
- Title(参考訳): マルチモーダルクエリによるビデオ内のイベントのローカライズ
- Authors: Gengyuan Zhang, Mang Ling Ada Fok, Jialu Ma, Yan Xia, Daniel Cremers, Philip Torr, Volker Tresp, Jindong Gu,
- Abstract要約: セマンティッククエリに基づくビデオ内のイベントのローカライズは、ビデオ理解における重要なタスクである。
マルチモーダルクエリでビデオ中のイベントをローカライズするための新しいベンチマークであるICQを紹介する。
疑似MQs戦略における3つのマルチモーダルクエリ適応法と新しいサロゲートファインタニングを提案する。
- 参考スコア(独自算出の注目度): 61.20556229245365
- License:
- Abstract: Localizing events in videos based on semantic queries is a pivotal task in video understanding, with the growing significance of user-oriented applications like video search. Yet, current research predominantly relies on natural language queries (NLQs), overlooking the potential of using multimodal queries (MQs) that integrate images to more flexibly represent semantic queries -- especially when it is difficult to express non-verbal or unfamiliar concepts in words. To bridge this gap, we introduce ICQ, a new benchmark designed for localizing events in videos with MQs, alongside an evaluation dataset ICQ-Highlight. To accommodate and evaluate existing video localization models for this new task, we propose 3 Multimodal Query Adaptation methods and a novel Surrogate Fine-tuning on pseudo-MQs strategy. ICQ systematically benchmarks 12 state-of-the-art backbone models, spanning from specialized video localization models to Video LLMs, across diverse application domains. Our experiments highlight the high potential of MQs in real-world applications. We believe this benchmark is a first step toward advancing MQs in video event localization.
- Abstract(参考訳): セマンティッククエリに基づくビデオ内のイベントのローカライズは、ビデオ理解において重要なタスクであり、ビデオ検索のようなユーザ指向アプリケーションの重要性が増している。
しかし、現在の研究は自然言語クエリ(NLQ)に大きく依存しており、特に言葉で非言語的あるいは不慣れな概念を表現するのが困難である場合に、セマンティッククエリをより柔軟に表現するために画像を統合するマルチモーダルクエリ(MQ)を使用する可能性を見越している。
このギャップを埋めるために、我々は、ICQ-Highlightの評価データセットとともに、MQでビデオ内のイベントをローカライズするために設計された新しいベンチマークであるICQを紹介します。
本課題の既存のビデオローカライゼーションモデルの実現と評価のために,3つのマルチモーダルクエリ適応法と疑似MQs戦略に基づく新しいサロゲートファインタニングを提案する。
ICQは、特定のビデオローカライゼーションモデルから、さまざまなアプリケーションドメインにまたがるビデオLLMまで、12の最先端のバックボーンモデルを体系的にベンチマークする。
我々の実験は、実世界のアプリケーションにおけるMQの高い可能性を強調します。
このベンチマークは、ビデオイベントのローカライゼーションにおけるMQの進化に向けた第一歩だと考えています。
関連論文リスト
- Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering [71.62961521518731]
HeurVidQAは、ドメイン固有のエンティティアクションを利用して、事前訓練されたビデオ言語基盤モデルを洗練するフレームワークである。
我々のアプローチでは、これらのモデルを暗黙の知識エンジンとして扱い、ドメイン固有のエンティティアクションプロンサを使用して、推論を強化する正確な手がかりにモデルを焦点を向けます。
論文 参考訳(メタデータ) (2024-10-12T06:22:23Z) - An Interactive Multi-modal Query Answering System with Retrieval-Augmented Large Language Models [21.892975397847316]
本稿では,新たに開発したマルチモーダル検索フレームワークとナビゲーショングラフインデックスを用いて,対話型マルチモーダルクエリ・アンサーリング(MQA)システムを提案する。
MQAの特筆すべき点は、異なるモダリティの重要性を評価するために、コントラスト学習を利用することである。
本システムは,計算プルーニング技術を用いて改良した,先進的なナビゲーショングラフインデックスによる効率的な検索を実現する。
論文 参考訳(メタデータ) (2024-07-05T02:01:49Z) - The Surprising Effectiveness of Multimodal Large Language Models for Video Moment Retrieval [36.516226519328015]
ビデオ言語タスクは空間的・時間的理解を必要とし、かなりの計算を必要とする。
本研究は,画像テキスト事前学習MLLMをモーメント検索に活用することの驚くべき有効性を示す。
我々は、Charades-STA、QVHighlights、ActivityNet Captionsといった広く使われているベンチマーク上で、新しい最先端のモーメント検索を実現する。
論文 参考訳(メタデータ) (2024-06-26T06:59:09Z) - Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement [72.7576395034068]
Video Corpus Moment Retrieval(VCMR)は、テキストクエリを使って、大量の未トリミングビデオから関連する瞬間を検索するための、新しいビデオ検索タスクである。
我々は、VCMRタスクにおいて、クエリとビデオの間の部分的関係を効果的に捉えることが不可欠であると主張している。
ビデオ検索には,2つのモーダルに対して異なる問合せ表現を生成するマルチモーダル・コラボレーティブ・ビデオレトリバーを導入する。
そこで本研究では,モータリティ特異的なゲートを用いたモーメントローカライザを提案する。
論文 参考訳(メタデータ) (2024-02-21T07:16:06Z) - Self-Chained Image-Language Model for Video Localization and Question
Answering [66.86740990630433]
ビデオ上での時間的ローカライゼーションとQAに対処するために,SeViLA(Se-Chained Video-Answering)フレームワークを提案する。
SeViLAフレームワークはLocalizerとAnswererの2つのモジュールで構成されている。
論文 参考訳(メタデータ) (2023-05-11T17:23:00Z) - CONQUER: Contextual Query-aware Ranking for Video Corpus Moment
Retrieval [24.649068267308913]
ビデオ検索アプリケーションは、ユーザーが大きなビデオコーパスから正確な瞬間を検索できるようにする。
本稿では,効率的なモーメントローカライゼーションとランキングのための新しいモデルを提案する。
クローズドワールドTVエピソードのTVRと、オープンワールドのユーザ生成ビデオのDiDeMoの2つのデータセットについて研究する。
論文 参考訳(メタデータ) (2021-09-21T08:07:27Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。
DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。
MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
論文 参考訳(メタデータ) (2021-05-13T17:33:26Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
テキストクエリにセマンティックにマッチする長いビデオにおいて、短いセグメントを識別する方法を示す。
この問題に対処するために、粗いクリップレベルと微調整フレームレベルの両方でビデオをエンコードするHierArchical Multi-Modal EncodeR (HAMMER)を提案する。
我々は、ActivityNet CaptionsとTVRデータセット上のビデオコーパスにおけるモーメントローカライゼーションのモデルを評価するために、広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2020-11-18T02:42:36Z) - HERO: Hierarchical Encoder for Video+Language Omni-representation
Pre-training [75.55823420847759]
本稿では,大規模ビデオ+言語オムニ表現学習のための新しいフレームワークHEROを提案する。
HEROは階層構造でマルチモーダル入力を符号化し、ビデオフレームのローカルコンテキストをクロスモーダル変換器でキャプチャする。
HEROはHowTo100Mと大規模TVデータセットを共同でトレーニングし、マルチキャラクタインタラクションによる複雑な社会的ダイナミクスの理解を深める。
論文 参考訳(メタデータ) (2020-05-01T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。