Data Ethics in the Era of Healthcare Artificial Intelligence in Africa: An Ubuntu Philosophy Perspective
- URL: http://arxiv.org/abs/2406.10121v1
- Date: Fri, 14 Jun 2024 15:28:36 GMT
- Title: Data Ethics in the Era of Healthcare Artificial Intelligence in Africa: An Ubuntu Philosophy Perspective
- Authors: Abdoul Jalil Djiberou Mahamadou, Aloysius Ochasi, Russ B. Altman,
- Abstract summary: This paper discusses healthcare data ethics in the AI era in Africa from the Ubuntu philosophy perspective.
Ethical guidelines must reflect political and cultural settings to account for cultural diversity, inclusivity, and historical factors such as colonialism.
The proposed framework could inform stakeholders, including AI developers, healthcare providers, the public, and policy-makers about healthcare data ethical usage in AI in Africa.
- Score: 2.5446340172055817
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data are essential in developing healthcare artificial intelligence (AI) systems. However, patient data collection, access, and use raise ethical concerns, including informed consent, data bias, data protection and privacy, data ownership, and benefit sharing. Various ethical frameworks have been proposed to ensure the ethical use of healthcare data and AI, however, these frameworks often align with Western cultural values, social norms, and institutional contexts emphasizing individual autonomy and well-being. Ethical guidelines must reflect political and cultural settings to account for cultural diversity, inclusivity, and historical factors such as colonialism. Thus, this paper discusses healthcare data ethics in the AI era in Africa from the Ubuntu philosophy perspective. It focuses on the contrast between individualistic and communitarian approaches to data ethics. The proposed framework could inform stakeholders, including AI developers, healthcare providers, the public, and policy-makers about healthcare data ethical usage in AI in Africa.
Related papers
- African Data Ethics: A Discursive Framework for Black Decolonial Data Science [13.599648076585606]
We present a framework for African data ethics informed by an interdisciplinary corpus of African scholarship.
Our framework highlights Africa as a pivotal site for challenging anti-blackness and algorithmic colonialism.
arXiv Detail & Related papers (2025-02-22T02:34:46Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Ethical Statistical Practice and Ethical AI [0.0]
An increase in social, cultural, industrial, scientific, and governmental concerns about the ethical development and use of AI systems worldwide.
The ASA has issued a statement on ethical statistical practice and AI (ASA, 2024)
Here we discuss the support for ethical statistical practice and ethical AI that has been established in long-standing human rights law and ethical practice standards for computing and statistics.
arXiv Detail & Related papers (2024-10-29T19:09:34Z) - Justice in Healthcare Artificial Intelligence in Africa [2.5446340172055817]
Justice is a major concern in AI that has implications for amplifying social inequities.
For Africa to effectively benefit from AI, these principles should align with the local context.
arXiv Detail & Related papers (2024-06-15T14:47:03Z) - Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial
Intelligence [0.08192907805418582]
This study attempts to identify the major ethical principles influencing the utility performance of AI at different technological levels.
Justice, privacy, bias, lack of regulations, risks, and interpretability are the most important principles to consider for ethical AI.
We propose a new utilitarian ethics-based theoretical framework for designing ethical AI for the healthcare domain.
arXiv Detail & Related papers (2023-09-26T02:10:58Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - Ensuring Trustworthy Medical Artificial Intelligence through Ethical and
Philosophical Principles [4.705984758887425]
AI-based computer-assisted diagnosis and treatment tools can democratize healthcare by matching the clinical level or surpassing clinical experts.
The democratization of such AI tools can reduce the cost of care, optimize resource allocation, and improve the quality of care.
integrating AI into healthcare raises several ethical and philosophical concerns, such as bias, transparency, autonomy, responsibility, and accountability.
arXiv Detail & Related papers (2023-04-23T04:14:18Z) - How Different Groups Prioritize Ethical Values for Responsible AI [75.40051547428592]
Private companies, public sector organizations, and academic groups have outlined ethical values they consider important for responsible AI technologies.
While their recommendations converge on a set of central values, little is known about the values a more representative public would find important for the AI technologies they interact with and might be affected by.
We conducted a survey examining how individuals perceive and prioritize responsible AI values across three groups.
arXiv Detail & Related papers (2022-05-16T14:39:37Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - AI Ethics Needs Good Data [0.8701566919381224]
We argue that discourse on AI must transcend the language of 'ethics' and engage with power and political economy.
We offer four 'economys' on which Good Data AI can be built: community, rights, usability and politics.
arXiv Detail & Related papers (2021-02-15T04:16:27Z) - Case Study: Deontological Ethics in NLP [119.53038547411062]
We study one ethical theory, namely deontological ethics, from the perspective of NLP.
In particular, we focus on the generalization principle and the respect for autonomy through informed consent.
We provide four case studies to demonstrate how these principles can be used with NLP systems.
arXiv Detail & Related papers (2020-10-09T16:04:51Z) - Aligning AI With Shared Human Values [85.2824609130584]
We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality.
We find that current language models have a promising but incomplete ability to predict basic human ethical judgements.
Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
arXiv Detail & Related papers (2020-08-05T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.