Justice in Healthcare Artificial Intelligence in Africa
- URL: http://arxiv.org/abs/2406.10653v1
- Date: Sat, 15 Jun 2024 14:47:03 GMT
- Title: Justice in Healthcare Artificial Intelligence in Africa
- Authors: Aloysius Ochasi, Abdoul Jalil Djiberou Mahamadou, Russ B. Altman,
- Abstract summary: Justice is a major concern in AI that has implications for amplifying social inequities.
For Africa to effectively benefit from AI, these principles should align with the local context.
- Score: 2.5446340172055817
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is an ongoing debate on balancing the benefits and risks of artificial intelligence (AI) as AI is becoming critical to improving healthcare delivery and patient outcomes. Such improvements are essential in resource-constrained settings where millions lack access to adequate healthcare services, such as in Africa. AI in such a context can potentially improve the effectiveness, efficiency, and accessibility of healthcare services. Nevertheless, the development and use of AI-driven healthcare systems raise numerous ethical, legal, and socio-economic issues. Justice is a major concern in AI that has implications for amplifying social inequities. This paper discusses these implications and related justice concepts such as solidarity, Common Good, sustainability, AI bias, and fairness. For Africa to effectively benefit from AI, these principles should align with the local context while balancing the risks. Compared to mainstream ethical debates on justice, this perspective offers context-specific considerations for equitable healthcare AI development in Africa.
Related papers
- Towards Clinical AI Fairness: Filling Gaps in the Puzzle [15.543248260582217]
This review systematically pinpoints several deficiencies concerning both healthcare data and the provided AI fairness solutions.
We highlight the scarcity of research on AI fairness in many medical domains where AI technology is increasingly utilized.
To bridge these gaps, our review advances actionable strategies for both the healthcare and AI research communities.
arXiv Detail & Related papers (2024-05-28T07:42:55Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - What We Know So Far: Artificial Intelligence in African Healthcare [0.0]
Artificial intelligence (AI) applied to healthcare has the potential to transform healthcare in Africa.
This paper reviews the current state of how AI Algorithms can be used to improve diagnostics, treatment, and disease monitoring.
There is a need for a well-coordinated effort by the governments, private sector, healthcare providers, and international organizations to create sustainable AI solutions.
arXiv Detail & Related papers (2023-05-10T19:27:40Z) - Ensuring Trustworthy Medical Artificial Intelligence through Ethical and
Philosophical Principles [4.705984758887425]
AI-based computer-assisted diagnosis and treatment tools can democratize healthcare by matching the clinical level or surpassing clinical experts.
The democratization of such AI tools can reduce the cost of care, optimize resource allocation, and improve the quality of care.
integrating AI into healthcare raises several ethical and philosophical concerns, such as bias, transparency, autonomy, responsibility, and accountability.
arXiv Detail & Related papers (2023-04-23T04:14:18Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - AI Challenges for Society and Ethics [0.0]
Artificial intelligence is already being applied in and impacting many important sectors in society, including healthcare, finance, and policing.
The role of AI governance is ultimately to take practical steps to mitigate this risk of harm while enabling the benefits of innovation in AI.
It also requires thinking through the normative question of what beneficial use of AI in society looks like, which is equally challenging.
arXiv Detail & Related papers (2022-06-22T13:33:11Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - AI Ethics Needs Good Data [0.8701566919381224]
We argue that discourse on AI must transcend the language of 'ethics' and engage with power and political economy.
We offer four 'economys' on which Good Data AI can be built: community, rights, usability and politics.
arXiv Detail & Related papers (2021-02-15T04:16:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.