Variational Quantum algorithm for Poisson equation
- URL: http://arxiv.org/abs/2012.07014v1
- Date: Sun, 13 Dec 2020 09:28:04 GMT
- Title: Variational Quantum algorithm for Poisson equation
- Authors: Hailing Liu, Yusen Wu, Linchun Wan, Shijie Pan, Sujuan Qin, Fei Gao,
and Qiaoyan Wen
- Abstract summary: We propose a Variational Quantum Algorithm (VQA) to solve the Poisson equation.
VQA can be executed on Noise Intermediate-Scale Quantum (NISQ) devices.
Numerical experiments demonstrate that our algorithm can effectively solve the Poisson equation.
- Score: 4.045204834863644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Poisson equation has wide applications in many areas of science and
engineering. Although there are some quantum algorithms that can efficiently
solve the Poisson equation, they generally require a fault-tolerant quantum
computer which is beyond the current technology. In this paper, we propose a
Variational Quantum Algorithm (VQA) to solve the Poisson equation, which can be
executed on Noise Intermediate-Scale Quantum (NISQ) devices. In detail, we
first adopt the finite difference method to transform the Poisson equation into
a linear system. Then, according to the special structure of the linear system,
we find an explicit tensor product decomposition, with only $2\log n+1$ items,
of its coefficient matrix under a specific set of simple operators, where $n$
is the dimension of the coefficient matrix. This implies that the proposed VQA
only needs $O(\log n)$ measurements, which dramatically reduce quantum
resources. Additionally, we perform quantum Bell measurements to efficiently
evaluate the expectation values of simple operators. Numerical experiments
demonstrate that our algorithm can effectively solve the Poisson equation.
Related papers
- High-Entanglement Capabilities for Variational Quantum Algorithms: The Poisson Equation Case [0.07366405857677226]
This research attempts to resolve problems by utilizing the IonQ Aria quantum computer capabilities.
We propose a decomposition of the discretized equation matrix (DPEM) based on 2- or 3-qubit entanglement gates and is shown to have $O(1)$ terms with respect to system size.
We also introduce the Globally-Entangling Ansatz which reduces the parameter space of the quantum ansatz while maintaining enough expressibility to find the solution.
arXiv Detail & Related papers (2024-06-14T16:16:50Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Advancing Algorithm to Scale and Accurately Solve Quantum Poisson
Equation on Near-term Quantum Hardware [0.0]
We present an advanced quantum algorithm for solving the Poisson equation with high accuracy and dynamically tunable problem size.
Particularly, in this work we present an advanced circuit that ensures the accuracy of the solution by implementing non-truncated eigenvalues.
We show that our algorithm not only increases the accuracy of the solutions but also composes more practical and scalable circuits.
arXiv Detail & Related papers (2022-10-29T18:50:40Z) - Advanced Quantum Poisson Solver in the NISQ era [0.0]
We present an advanced quantum algorithm for solving the Poisson equation with high accuracy and dynamically tunable problem size.
In this work we present an advanced circuit that ensures the accuracy of the solution by implementing non-truncated eigenvalues.
We show that our algorithm not only increases the accuracy of the solutions, but also composes more practical and scalable circuits.
arXiv Detail & Related papers (2022-09-19T22:17:21Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum simulation and circuit design for solving multidimensional
Poisson equations [0.0]
A quantum algorithm is shown running in polylog time to produce a quantum state representing the solution of the Poisson equation.
Our purpose is to test an efficient circuit design which can break the curse of dimensionality on a quantum computer.
arXiv Detail & Related papers (2020-06-16T13:17:31Z) - A quantum Poisson solver implementable on NISQ devices (improved
version) [23.69613801851615]
We propose a compact quantum algorithm for solving one-dimensional Poisson equation based on simple Ry rotation.
The solution error comes only from the finite difference approximation of the Poisson equation.
Our quantum Poisson solver (QPS) has gate-complexity of 3n in qubits and 4n3 in one- and two-qubit gates, where n is the logarithmic of the dimension of the linear system of equations.
arXiv Detail & Related papers (2020-05-01T07:38:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.