Object criticality for safer navigation
- URL: http://arxiv.org/abs/2406.10232v1
- Date: Thu, 25 Apr 2024 09:02:22 GMT
- Title: Object criticality for safer navigation
- Authors: Andrea Ceccarelli, Leonardo Montecchi,
- Abstract summary: Given an object detector, filtering objects based on their relevance, reduces the risk of missing relevant objects, decreases the likelihood of dangerous trajectories, and improves the quality of trajectories in general.
We show that, given an object detector, filtering objects based on their relevance, reduces the risk of missing relevant objects, decreases the likelihood of dangerous trajectories, and improves the quality of trajectories in general.
- Score: 1.565361244756411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection in autonomous driving consists in perceiving and locating instances of objects in multi-dimensional data, such as images or lidar scans. Very recently, multiple works are proposing to evaluate object detectors by measuring their ability to detect the objects that are most likely to interfere with the driving task. Detectors are then ranked according to their ability to detect the most relevant objects, rather than the highest number of objects. However there is little evidence so far that the relevance of predicted object may contribute to the safety and reliability improvement of the driving task. This position paper elaborates on a strategy, together with partial results, to i) configure and deploy object detectors that successfully extract knowledge on object relevance, and ii) use such knowledge to improve the trajectory planning task. We show that, given an object detector, filtering objects based on their relevance, in combination with the traditional confidence threshold, reduces the risk of missing relevant objects, decreases the likelihood of dangerous trajectories, and improves the quality of trajectories in general.
Related papers
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
Our approach formulates the union of the two tasks as a trajectory refinement problem.
To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects.
In our experiments, we observe that ourmodel outperforms the state-of-the-art on Argoverse 2 Sensor and Open dataset.
arXiv Detail & Related papers (2024-06-06T18:12:04Z) - Towards Building Self-Aware Object Detectors via Reliable Uncertainty
Quantification and Calibration [17.461451218469062]
In this work, we introduce the Self-Aware Object Detection (SAOD) task.
The SAOD task respects and adheres to the challenges that object detectors face in safety-critical environments such as autonomous driving.
We extensively use our framework, which introduces novel metrics and large scale test datasets, to test numerous object detectors.
arXiv Detail & Related papers (2023-07-03T11:16:39Z) - On the Importance of Backbone to the Adversarial Robustness of Object
Detectors [26.712934402914854]
We argue that using adversarially pre-trained backbone networks is essential for enhancing the adversarial robustness of object detectors.
We propose a simple yet effective recipe for fast adversarial fine-tuning on object detectors with adversarially pre-trained backbones.
Our empirical results set a new milestone and deepen the understanding of adversarially robust object detection.
arXiv Detail & Related papers (2023-05-27T10:26:23Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - Evaluating Object (mis)Detection from a Safety and Reliability
Perspective: Discussion and Measures [1.8492669447784602]
We propose new object detection measures that reward the correct identification of objects that are most dangerous and most likely to affect driving decisions.
We apply our model on the recent autonomous driving dataset nuScenes, and we compare nine object detectors.
Results show that, in several settings, object detectors that perform best according to the nuScenes ranking are not the preferable ones when the focus is shifted on safety and reliability.
arXiv Detail & Related papers (2022-03-04T09:31:20Z) - SafePicking: Learning Safe Object Extraction via Object-Level Mapping [19.502587411252946]
We present a system, SafePicking, that integrates object-level mapping and learning-based motion planning.
Planning is done by learning a deep Q-network that receives observations of predicted poses and a depth-based heightmap to output a motion trajectory.
Our results show that the observation fusion of poses and depth-sensing gives both better performance and robustness to the model.
arXiv Detail & Related papers (2022-02-11T18:55:10Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Context-Aware Transfer Attacks for Object Detection [51.65308857232767]
We present a new approach to generate context-aware attacks for object detectors.
We show that by using co-occurrence of objects and their relative locations and sizes as context information, we can successfully generate targeted mis-categorization attacks.
arXiv Detail & Related papers (2021-12-06T18:26:39Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Understanding Object Detection Through An Adversarial Lens [14.976840260248913]
This paper presents a framework for analyzing and evaluating vulnerabilities of deep object detectors under an adversarial lens.
We demonstrate that the proposed framework can serve as a methodical benchmark for analyzing adversarial behaviors and risks in real-time object detection systems.
We conjecture that this framework can also serve as a tool to assess the security risks and the adversarial robustness of deep object detectors to be deployed in real-world applications.
arXiv Detail & Related papers (2020-07-11T18:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.