論文の概要: GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems
- arxiv url: http://arxiv.org/abs/2406.10244v1
- Date: Thu, 6 Jun 2024 13:55:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-23 13:35:51.776855
- Title: GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems
- Title(参考訳): GLINT-RU:逐次リコメンダシステムのための軽量インテリジェントリカレントユニット
- Authors: Sheng Zhang, Maolin Wang, Xiangyu Zhao,
- Abstract要約: 本稿では,新しい効率的なシーケンシャルレコメンデーションフレームワークGLINT-RUを提案する。
推論速度を加速するために、GRU(Gated Recurrent Units)モジュールを使用する。
我々のフレームワークは、既存のベースラインよりも優れた予測速度と予測精度を実現している。
- 参考スコア(独自算出の注目度): 24.758106816702767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving field of artificial intelligence, transformer-based models have gained significant attention in the context of Sequential Recommender Systems (SRSs), demonstrating remarkable proficiency in capturing user-item interactions. However, such attention-based frameworks result in substantial computational overhead and extended inference time. To address this problem, this paper proposes a novel efficient sequential recommendation framework GLINT-RU that leverages dense selective Gated Recurrent Units (GRU) module to accelerate the inference speed, which is a pioneering work to further exploit the potential of efficient GRU modules in SRSs. The GRU module lies at the heart of GLINT-RU, playing a crucial role in substantially reducing both inference time and GPU memory usage. Through the integration of a dense selective gate, our framework adeptly captures both long-term and short-term item dependencies, enabling the adaptive generation of item scores. GLINT-RU further integrates a mixing block, enriching it with global user-item interaction information to bolster recommendation quality. Moreover, we design a gated Multi-layer Perceptron (MLP) for our framework where the information is deeply filtered. Extensive experiments on three datasets are conducted to highlight the effectiveness and efficiency of GLINT-RU. Our GLINT-RU achieves exceptional inference speed and prediction accuracy, outperforming existing baselines based on Recurrent Neural Network (RNN), Transformer, MLP and State Space Model (SSM). These results establish a new standard in sequential recommendation, highlighting the potential of GLINT-RU as a renewing approach in the realm of recommender systems.
- Abstract(参考訳): 人工知能の急速に発展する分野において、トランスフォーマーベースのモデルはシーケンシャル・レコメンダー・システム(SRS)の文脈において大きな注目を集めており、ユーザーとイテムの相互作用を捉えるのに顕著な習熟性を示している。
しかし、このような注意に基づくフレームワークは計算オーバーヘッドが大きくなり、推論時間が延長される。
そこで本研究では,SRSにおける効率的なGRUモジュールの可能性をさらに活用するための先駆的な手法として,高密度選択型GRU(Gated Recurrent Units)モジュールを活用して推論速度を高速化する,新しい効率的なシーケンシャルレコメンデーションフレームワークGLINT-RUを提案する。
GRUモジュールはGLINT-RUの中心に位置し、推論時間とGPUメモリ使用量の削減に重要な役割を果たしている。
本フレームワークは,高密度選択ゲートの統合により,長期および短期の項目依存を適切に捕捉し,項目スコアを適応的に生成する。
GLINT-RUはさらにミキシングブロックを統合し、グローバルなユーザとイテムのインタラクション情報を豊かにすることで、レコメンデーションの品質を高めている。
さらに,情報を深くフィルタする多層パーセプトロン(MLP)を設計する。
GLINT-RUの有効性と有効性を明らかにするために、3つのデータセットに関する大規模な実験を行った。
我々のGLINT-RUは、リカレントニューラルネットワーク(RNN)、トランスフォーマー、MLP、ステートスペースモデル(SSM)に基づく既存のベースラインよりも優れた予測速度と予測精度を実現している。
これらの結果は、リコメンデータシステム領域における更新アプローチとしてのGLINT-RUの可能性を強調し、シーケンシャルなレコメンデーションにおける新しい標準を確立した。
関連論文リスト
- RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
大規模言語モデル(LLM)は目覚ましい性能を達成したが、高い計算コストとレイテンシに直面している。
Retrieval-augmented Generation (RAG) は、外部知識を統合するのに役立つが、不完全な検索は、SLMを誤解させるノイズを引き起こす可能性がある。
我々は、Margin-aware Preference Optimizationを通じて、SLMのための堅牢なRAGフレームワークであるRoseRAGを提案する。
論文 参考訳(メタデータ) (2025-02-16T04:56:53Z) - Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data [1.6135226672466307]
無人航空機 (UAV) とハイパースペクトルイメージング (HSI) が組み合わさって、環境および農業用途の可能性を秘めている。
本稿では,リアルタイムツリー表現型セグメンテーションのためのオンラインハイパースペクトル簡易線形反復クラスタリングアルゴリズム(OHSLIC)を提案する。
論文 参考訳(メタデータ) (2025-01-17T13:48:04Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
新たな合成データ生成パイプラインを用いて48,000の命令追従プロンプトを生成する。
合成プロンプトでは、リジェクションサンプリング(RS)とモンテカルロ木探索(MCTS)の2つの選好データセットキュレーション手法を用いる。
実験により、MCTSが生成した選好ペアにおける共有プレフィックスは、限界はあるが一貫した改善をもたらすことが明らかになった。
高コントラストの選好ペアは一般的に低コントラストのペアよりも優れているが、両者を組み合わせることで最高のパフォーマンスが得られることが多い。
論文 参考訳(メタデータ) (2024-12-18T15:38:39Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - GANPrompt: Enhancing Robustness in LLM-Based Recommendations with GAN-Enhanced Diversity Prompts [15.920623515602038]
大規模言語モデル(LLM)は、素早い単語の影響を受けやすい。
本稿では,GAN(Generative Adversarial Networks)に基づく多次元LCMの多様性フレームワークであるGANPromptを提案する。
このフレームワークは,GAN生成技術とLLMの深い意味理解機能を統合することにより,多様なプロンプトに対するモデルの適応性と安定性を向上させる。
論文 参考訳(メタデータ) (2024-08-19T03:13:20Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - DML-GANR: Deep Metric Learning With Generative Adversarial Network
Regularization for High Spatial Resolution Remote Sensing Image Retrieval [9.423185775609426]
我々は,HSR-RSI検索のためのDML-GANR(Generative Adversarial Network regularization)を用いたディープメトリック学習手法を開発した。
3つのデータセットの実験結果から,HSR-RSI検索における最先端技術よりもDML-GANRの方が優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-07T02:26:03Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。