論文の概要: Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data
- arxiv url: http://arxiv.org/abs/2501.10199v1
- Date: Fri, 17 Jan 2025 13:48:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:02.749563
- Title: Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data
- Title(参考訳): UAVハイパースペクトルデータの効率的フェノタイプセグメンテーションのための適応クラスタリング
- Authors: Ciem Cornelissen, Sam Leroux, Pieter Simoens,
- Abstract要約: 無人航空機 (UAV) とハイパースペクトルイメージング (HSI) が組み合わさって、環境および農業用途の可能性を秘めている。
本稿では,リアルタイムツリー表現型セグメンテーションのためのオンラインハイパースペクトル簡易線形反復クラスタリングアルゴリズム(OHSLIC)を提案する。
- 参考スコア(独自算出の注目度): 1.6135226672466307
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) combined with Hyperspectral imaging (HSI) offer potential for environmental and agricultural applications by capturing detailed spectral information that enables the prediction of invisible features like biochemical leaf properties. However, the data-intensive nature of HSI poses challenges for remote devices, which have limited computational resources and storage. This paper introduces an Online Hyperspectral Simple Linear Iterative Clustering algorithm (OHSLIC) framework for real-time tree phenotype segmentation. OHSLIC reduces inherent noise and computational demands through adaptive incremental clustering and a lightweight neural network, which phenotypes trees using leaf contents such as chlorophyll, carotenoids, and anthocyanins. A hyperspectral dataset is created using a custom simulator that incorporates realistic leaf parameters, and light interactions. Results demonstrate that OHSLIC achieves superior regression accuracy and segmentation performance compared to pixel- or window-based methods while significantly reducing inference time. The method`s adaptive clustering enables dynamic trade-offs between computational efficiency and accuracy, paving the way for scalable edge-device deployment in HSI applications.
- Abstract(参考訳): 無人航空機(UAV)とハイパースペクトルイメージング(HSI)を組み合わせることで、生物化学的葉の特性などの見えない特徴を予測できる詳細なスペクトル情報を収集することで、環境や農業の応用の可能性を提供する。
しかし、HSIのデータ集約性は、限られた計算資源とストレージを持つリモートデバイスに課題をもたらす。
本稿では,リアルタイムツリー表現型セグメンテーションのためのオンラインハイパースペクトル簡易線形反復クラスタリングアルゴリズム(OHSLIC)を提案する。
OHSLICは、適応的なインクリメンタルクラスタリングと軽量ニューラルネットワークを通じて固有のノイズと計算要求を低減し、クロロフィル、カロテノイド、アントシアニンなどの葉の内容を表現している。
ハイパースペクトルデータセットは、現実的な葉のパラメータと光の相互作用を含むカスタムシミュレータを使って作成される。
その結果,OHSLICは画素法やウィンドウ法に比べて高い回帰精度とセグメンテーション性能を達成でき,推論時間を大幅に短縮できることがわかった。
適応クラスタリング(adaptive clustering)は、計算効率と精度の動的トレードオフを可能にし、HSIアプリケーションにおけるスケーラブルなエッジデバイスデプロイメントを実現する。
関連論文リスト
- Generative Principal Component Regression via Variational Inference [2.4415762506639944]
適切な操作を設計するための1つのアプローチは、予測モデルの重要な特徴をターゲットとすることである。
我々は,そのような情報を潜在空間で表現する,教師付き変分オートエンコーダ(SVAE)に基づく新しい目的を開発する。
シミュレーションでは,gPCRは通常のPCRやSVAEと比較して,操作時のターゲット選択を劇的に改善することを示した。
論文 参考訳(メタデータ) (2024-09-03T22:38:55Z) - HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification [16.742768644585684]
HSIMambaは、双方向の逆畳み込みニューラルネットワークパスを使用して、スペクトル特徴をより効率的に抽出する新しいフレームワークである。
提案手法は,CNNの動作効率と,トランスフォーマに見られる注意機構の動的特徴抽出機能を組み合わせたものである。
このアプローチは、現在のベンチマークを超えて分類精度を改善し、トランスフォーマーのような高度なモデルで遭遇する計算の非効率性に対処する。
論文 参考訳(メタデータ) (2024-03-30T07:27:36Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
現在のハイパースペクトル異常検出(HAD)ベンチマークデータセットは、低解像度、単純なバックグラウンド、検出データの小さなサイズに悩まされている。
これらの要因は、ロバスト性の観点からよく知られた低ランク表現(LRR)モデルの性能も制限する。
我々は、複雑なシナリオにおけるHADアルゴリズムの堅牢性を改善するために、新しいHADベンチマークデータセットであるAIR-HADを構築した。
論文 参考訳(メタデータ) (2024-02-23T14:15:58Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
本稿では,リフレクタンスBRDFデータのコンパクトニューラルネットワークに基づく表現について述べる。
BRDFを軽量ネットワークとしてエンコードし、適応角サンプリングによるトレーニングスキームを提案する。
複数の実世界のデータセットから等方性および異方性BRDFの符号化結果を評価する。
論文 参考訳(メタデータ) (2021-02-11T12:00:24Z) - VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and
Feature-level Geospatial Conditional Inputs [0.0]
画素レベル(PLC)と特徴レベル(FLC)を同時に条件付けした意味的リッチな画像を合成するための条件生成モデルを提案する。
GPSデータセットを用いた実験では,提案モデルが地理的に異なる場所にまたがる様々な形態のマクロアグリゲーションを正確に生成できることが示されている。
論文 参考訳(メタデータ) (2020-12-08T03:46:19Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。