論文の概要: Connected Speech-Based Cognitive Assessment in Chinese and English
- arxiv url: http://arxiv.org/abs/2406.10272v2
- Date: Tue, 18 Jun 2024 10:41:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 01:05:59.604276
- Title: Connected Speech-Based Cognitive Assessment in Chinese and English
- Title(参考訳): 中国語と英語におけるコネクテッド音声に基づく認知評価
- Authors: Saturnino Luz, Sofia De La Fuente Garcia, Fasih Haider, Davida Fromm, Brian MacWhinney, Alyssa Lanzi, Ya-Ning Chang, Chia-Ju Chou, Yi-Chien Liu,
- Abstract要約: 本稿では,コネクテッド音声の分析による認知機能評価のための新しいベンチマークデータセットと予測タスクを提案する。
このデータセットは、認知障害のレベルが異なる中国語と英語の話者のための音声サンプルと臨床情報で構成されている。
予測タスクは、軽度の認知障害診断と認知テストスコア予測を含む。
- 参考スコア(独自算出の注目度): 10.205946648609752
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a novel benchmark dataset and prediction tasks for investigating approaches to assess cognitive function through analysis of connected speech. The dataset consists of speech samples and clinical information for speakers of Mandarin Chinese and English with different levels of cognitive impairment as well as individuals with normal cognition. These data have been carefully matched by age and sex by propensity score analysis to ensure balance and representativity in model training. The prediction tasks encompass mild cognitive impairment diagnosis and cognitive test score prediction. This framework was designed to encourage the development of approaches to speech-based cognitive assessment which generalise across languages. We illustrate it by presenting baseline prediction models that employ language-agnostic and comparable features for diagnosis and cognitive test score prediction. The models achieved unweighted average recall was 59.2% in diagnosis, and root mean squared error of 2.89 in score prediction.
- Abstract(参考訳): 本稿では,コネクテッド音声の分析による認知機能評価のための新しいベンチマークデータセットと予測タスクを提案する。
このデータセットは、中国語と英語の話者の音声サンプルと臨床情報からなり、認知障害のレベルが異なる。
これらのデータは、モデルトレーニングにおけるバランスと表現力を確保するために、確率スコア分析によって年齢と性別によって慎重に一致している。
予測タスクは、軽度の認知障害診断と認知テストスコア予測を含む。
このフレームワークは、言語にまたがって一般化する音声に基づく認知評価手法の開発を促進するために設計された。
本稿では,言語に依存しない,同等の機能を備えたベースライン予測モデルを用いて,診断と認知テストスコア予測を行う。
非重みのない平均リコールは59.2%、根平均2乗誤差は2.89である。
関連論文リスト
- Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
記憶障害の症状の早期発見は、集団の健康確保に重要な役割を担っている。
臨床環境における標準化された音声テストの欠如は、自然音声言語を解析するための自動機械学習技術の開発にますます重点を置いている。
この研究は特徴選択に関するアプローチを示し、ジュネーブの最小音響パラメータセットと相対音声停止から診断に必要な重要な特徴を自動的に選択することを可能にする。
論文 参考訳(メタデータ) (2024-02-02T17:06:03Z) - Dementia Assessment Using Mandarin Speech with an Attention-based Speech
Recognition Encoder [0.4369058206183195]
本稿では,マンダリン話者に適した認知症評価システムを構築するために,音声認識モデルを利用する。
99名の被験者からマンダリン音声データを収集し, 地域病院から臨床評価を得た。
アルツハイマー病の診断では92.04%の精度で, 平均絶対誤差は9%であった。
論文 参考訳(メタデータ) (2023-10-06T03:04:11Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - Process Knowledge-infused Learning for Clinician-friendly Explanations [14.405002816231477]
言語モデルはソーシャルメディアデータを用いてメンタルヘルスを評価することができる。
彼らは臨床医の診断過程とポストを比較しない。
臨床医が理解できる概念を使って言語モデルのアウトプットを説明するのは難しいです。
論文 参考訳(メタデータ) (2023-06-16T13:08:17Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Semantic Coherence Markers for the Early Diagnosis of the Alzheimer
Disease [0.0]
パープレキシティはもともと、与えられた言語モデルがテキストシーケンスを予測するのにどの程度適しているかを評価するための情報理論の尺度として考え出された。
我々は2グラムから5グラムまでのN-gramとトランスフォーマーベース言語モデルであるGPT-2を多種多様な言語モデルに適用した。
ベストパフォーマンスモデルでは、ADクラスと制御対象の両方から対象を分類する際に、完全精度とFスコア(精度/特異度とリコール/感度のそれぞれ1.00)を達成した。
論文 参考訳(メタデータ) (2023-02-02T11:40:16Z) - Multilingual Alzheimer's Dementia Recognition through Spontaneous
Speech: a Signal Processing Grand Challenge [18.684024762601215]
この信号処理グランドチャレンジ(SPGC)は、社会的・医療的関連性の難しい自動予測問題をターゲットにしている。
チャレンジは、ある言語(英語)における音声に基づいて構築された予測モデルが、他の言語(ギリシャ語)に一般化する程度を評価するように設計されている。
論文 参考訳(メタデータ) (2023-01-13T14:09:13Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
ディープニューラルベース視覚唇読解モデルにおける認知的側面を比較し,識別する。
我々は、認知心理学におけるこれらの理論と独自のモデリングの間に強い相関関係を観察する。
論文 参考訳(メタデータ) (2021-10-13T05:30:50Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
本研究では、事前学習された言語モデルを用いて、文章の感情情報を学習し、音声の感情分析を行う。
本稿では,言語モデルを用いた擬似ラベルに基づく半教師付き訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T20:15:21Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。