論文の概要: Semantic Coherence Markers for the Early Diagnosis of the Alzheimer
Disease
- arxiv url: http://arxiv.org/abs/2302.01025v1
- Date: Thu, 2 Feb 2023 11:40:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-03 14:20:54.656666
- Title: Semantic Coherence Markers for the Early Diagnosis of the Alzheimer
Disease
- Title(参考訳): アルツハイマー病早期診断のための意味的コヒーレンスマーカー
- Authors: Davide Colla, Matteo Delsanto, Marco Agosto, Benedetto Vitiello,
Daniele Paolo Radicioni
- Abstract要約: パープレキシティはもともと、与えられた言語モデルがテキストシーケンスを予測するのにどの程度適しているかを評価するための情報理論の尺度として考え出された。
我々は2グラムから5グラムまでのN-gramとトランスフォーマーベース言語モデルであるGPT-2を多種多様な言語モデルに適用した。
ベストパフォーマンスモデルでは、ADクラスと制御対象の両方から対象を分類する際に、完全精度とFスコア(精度/特異度とリコール/感度のそれぞれ1.00)を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we explore how language models can be employed to analyze
language and discriminate between mentally impaired and healthy subjects
through the perplexity metric. Perplexity was originally conceived as an
information-theoretic measure to assess how much a given language model is
suited to predict a text sequence or, equivalently, how much a word sequence
fits into a specific language model. We carried out an extensive
experimentation with the publicly available data, and employed language models
as diverse as N-grams, from 2-grams to 5-grams, and GPT-2, a transformer-based
language model. We investigated whether perplexity scores may be used to
discriminate between the transcripts of healthy subjects and subjects suffering
from Alzheimer Disease (AD). Our best performing models achieved full accuracy
and F-score (1.00 in both precision/specificity and recall/sensitivity) in
categorizing subjects from both the AD class and control subjects. These
results suggest that perplexity can be a valuable analytical metrics with
potential application to supporting early diagnosis of symptoms of mental
disorders.
- Abstract(参考訳): 本研究では,言語モデルを用いて言語分析を行い,パープレキシティ指標を用いて精神障害者と健常者の判別を行う。
パープレキシティはもともと、与えられた言語モデルがテキストのシーケンスを予測するのにどの程度適しているか、あるいは単語のシーケンスが特定の言語モデルにどの程度適合するかを評価するための情報理論的な尺度として考え出された。
N-gram から 5-gram まで多種多様な言語モデルと変換器ベースの言語モデル GPT-2 を用いて,公開データを用いた広範囲な実験を行った。
健常者とアルツハイマー病(AD)患者との鑑別にパープレキシティスコアが有用かどうかを検討した。
評価対象をADクラスと対照群の両方から分類し,完全精度とFスコア(精度/特異度とリコール/感度)を得た。
これらの結果から,パープレキシティは精神疾患の早期診断に有効な分析指標となる可能性が示唆された。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Reformulating NLP tasks to Capture Longitudinal Manifestation of
Language Disorders in People with Dementia [18.964022118823532]
我々は中程度の大きさの事前学習言語モデルを用いて言語障害パターンを学習する。
次に、最良モデルからの確率推定値を用いて、デジタル言語マーカーを構築する。
提案する言語障害マーカーは,疾患進行に伴う言語障害に関する有用な知見を提供する。
論文 参考訳(メタデータ) (2023-10-15T17:58:47Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Acoustic-Linguistic Features for Modeling Neurological Task Score in
Alzheimer's [1.290382979353427]
自然言語処理と機械学習はアルツハイマー病を確実に検出するための有望な技術を提供する。
我々は,10種類の線形回帰モデルの性能を比較し,比較した。
与えられたタスクに対して,手作りの言語的特徴は音響的特徴や学習的特徴よりも重要であることがわかった。
論文 参考訳(メタデータ) (2022-09-13T15:35:31Z) - GPT-D: Inducing Dementia-related Linguistic Anomalies by Deliberate
Degradation of Artificial Neural Language Models [7.8430387435520625]
一般英語テキストで事前学習したTransformer DLモデル(GPT-2)を,人工劣化版(GPT-D)と組み合わせて提案する手法を提案する。
この手法は、広く使われている「Cookie Theft」画像記述タスクから得られたテキストデータに対する最先端のパフォーマンスにアプローチする。
本研究は, 生成型ニューラル言語モデルの内部動作, 生成する言語, 認知症が人間の発話や言語特性に与える影響について, より深く理解するためのステップである。
論文 参考訳(メタデータ) (2022-03-25T00:25:42Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
論文 参考訳(メタデータ) (2022-03-21T09:57:20Z) - Influence of ASR and Language Model on Alzheimer's Disease Detection [2.4698886064068555]
画像から参加者の音声記述を転写するために,SotA ASRシステムを用いて分析する。
本研究では,ASRから仮説を復号化するための言語モデルが欠如していることから,単語の非標準列を補正する言語モデルの影響について検討する。
提案システムは、韻律と声質に基づく音響と、最も一般的な単語の最初の出現に基づく語彙的特徴を組み合わせる。
論文 参考訳(メタデータ) (2021-09-20T10:41:39Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Comparing Natural Language Processing Techniques for Alzheimer's
Dementia Prediction in Spontaneous Speech [1.2805268849262246]
アルツハイマー認知症(英語: Alzheimer's Dementia、AD)は、認知機能に影響を与える不治の、不安定で進行性の神経変性疾患である。
自発音声タスクによるアルツハイマー認知は、ADの分類と予測のために、音響的に前処理とバランスの取れたデータセットを提供する。
論文 参考訳(メタデータ) (2020-06-12T17:51:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。