論文の概要: Transferable Embedding Inversion Attack: Uncovering Privacy Risks in Text Embeddings without Model Queries
- arxiv url: http://arxiv.org/abs/2406.10280v1
- Date: Wed, 12 Jun 2024 05:09:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 01:21:32.614043
- Title: Transferable Embedding Inversion Attack: Uncovering Privacy Risks in Text Embeddings without Model Queries
- Title(参考訳): Transferable Embedding Inversion Attack: モデルクエリなしのテキスト埋め込みにおけるプライバシリスクの発見
- Authors: Yu-Hsiang Huang, Yuche Tsai, Hsiang Hsiao, Hong-Yi Lin, Shou-De Lin,
- Abstract要約: 本研究では,テキスト埋め込みに伴うプライバシーリスクについて検討し,攻撃者が元の埋め込みモデルにアクセスできないシナリオに着目した。
直接モデルアクセスを必要とする以前の研究とは対照的に、転送攻撃法を開発することにより、より現実的な脅威モデルを探究する。
このアプローチでは、サロゲートモデルを使用して被害者モデルの振る舞いを模倣し、攻撃者は直接アクセスすることなくテキスト埋め込みから機密情報を推測することができる。
- 参考スコア(独自算出の注目度): 4.1307156785163635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the privacy risks associated with text embeddings, focusing on the scenario where attackers cannot access the original embedding model. Contrary to previous research requiring direct model access, we explore a more realistic threat model by developing a transfer attack method. This approach uses a surrogate model to mimic the victim model's behavior, allowing the attacker to infer sensitive information from text embeddings without direct access. Our experiments across various embedding models and a clinical dataset demonstrate that our transfer attack significantly outperforms traditional methods, revealing the potential privacy vulnerabilities in embedding technologies and emphasizing the need for enhanced security measures.
- Abstract(参考訳): 本研究では,テキスト埋め込みに伴うプライバシーリスクについて検討し,攻撃者が元の埋め込みモデルにアクセスできないシナリオに着目した。
直接モデルアクセスを必要とする以前の研究とは対照的に、転送攻撃法を開発することにより、より現実的な脅威モデルを探究する。
このアプローチでは、サロゲートモデルを使用して被害者モデルの振る舞いを模倣し、攻撃者は直接アクセスすることなくテキスト埋め込みから機密情報を推測することができる。
様々な埋め込みモデルと臨床データセットを用いた実験により、当社の転送攻撃は従来の方法よりも大幅に優れており、埋め込み技術における潜在的なプライバシー上の脆弱性を明らかにし、セキュリティ対策の強化の必要性を強調している。
関連論文リスト
- Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
本稿では,フェデレーションモデルにおける敵ユーザの戦略的排除に焦点を当てた,新たなフレームワークを提案する。
我々は、ローカルトレーニングインスタンスが収集したメタデータと差分プライバシー技術を統合することにより、フェデレートアルゴリズムのアグリゲーションフェーズにおける異常を検出する。
提案手法の有効性を実証し,ユーザのプライバシとモデル性能を維持しながらデータ汚染のリスクを大幅に軽減する。
論文 参考訳(メタデータ) (2024-04-19T10:36:00Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
本研究は, よく設計された毒物標的データによるモデル適応に対するバックドア攻撃の可能性を探る。
既存の適応アルゴリズムと組み合わせたMixAdaptというプラグイン・アンド・プレイ方式を提案する。
論文 参考訳(メタデータ) (2024-01-11T16:42:10Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - Privacy Threats in Stable Diffusion Models [0.7366405857677227]
本稿では,安定拡散コンピュータビジョンモデルを対象としたMIA(Message Inference attack)の新たなアプローチを提案する。
MIAは、モデルのトレーニングデータに関する機密情報を抽出することを目的としており、重要なプライバシー上の懸念を呈している。
被害者モデルに繰り返し問い合わせるだけでよいブラックボックスMIAを考案する。
論文 参考訳(メタデータ) (2023-11-15T20:31:40Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Revisiting Adversarially Learned Injection Attacks Against Recommender
Systems [6.920518936054493]
本稿では,逆学習型インジェクションアタック問題を再考する。
我々は、最適化問題として偽ユーザーを生成するための正確な解決策が、はるかに大きな影響をもたらすことを示している。
論文 参考訳(メタデータ) (2020-08-11T17:30:02Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
メンバーシップ推論攻撃に対する事前の取り組みは、プライバシーリスクを著しく過小評価する可能性があることを示す。
まず、既存の非ニューラルネットワークベースの推論攻撃を改善することで、メンバーシップ推論のプライバシリスクをベンチマークする。
次に、プライバシリスクスコアと呼ばれる新しい指標を定式化し、導出することで、詳細なプライバシ分析のための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-03-24T00:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。