論文の概要: In-depth analysis of recall initiators of medical devices with a Machine Learning-Natural language Processing workflow
- arxiv url: http://arxiv.org/abs/2406.10312v1
- Date: Fri, 14 Jun 2024 12:38:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 01:01:54.720761
- Title: In-depth analysis of recall initiators of medical devices with a Machine Learning-Natural language Processing workflow
- Title(参考訳): 機械学習-自然言語処理ワークフローを用いた医療機器のリコール開始者の詳細な分析
- Authors: Yang Hu,
- Abstract要約: この研究は、2018年から2024年までの医療機器リコールデータベースに基づいて、医療機器リコール開始者を特定し、評価し、分析した。
その結果、ノイズクラスタリングアルゴリズムを用いたアプリケーションにおける教師なし密度に基づく空間クラスタリングは、それぞれのリコール開始器を特定の方法で提示できることが示唆された。
- 参考スコア(独自算出の注目度): 3.392104905453323
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recall initiator identification and assessment are the preliminary steps to prevent medical device recall. Conventional analysis tools are inappropriate for processing massive and multi-formatted data comprehensively and completely to meet the higher expectations of delicacy management with the increasing overall data volume and textual data format. This study presents a bigdata-analytics-based machine learning-natural language processing work tool to address the shortcomings in dealing efficiency and data process versatility of conventional tools in the practical context of big data volume and muti data format. This study identified, assessed and analysed the medical device recall initiators according to the public medical device recall database from 2018 to 2024 with the ML-NLP tool. The results suggest that the unsupervised Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm can present each single recall initiator in a specific manner, therefore helping practitioners to identify the recall reasons comprehensively and completely within a short time frame. This is then followed by text similarity-based textual classification to assist practitioners in controlling the group size of recall initiators and provide managerial insights from the operational to the tactical and strategical levels. This ML-NLP work tool can not only capture specific details of each recall initiator but also interpret the inner connection of each existing initiator and can be implemented for risk identification and assessment in the forward SC. Finally, this paper suggests some concluding remarks and presents future works. More proactive practices and control solutions for medical device recalls are expected in the future.
- Abstract(参考訳): 医療機器のリコールを防ぐための予備的なステップは、リコール開始者識別とアセスメントである。
従来の分析ツールは、データ量やテキストデータ形式が増大するにつれて、デリカシー管理の期待が高まるのに、包括的にかつ完全に、大量のデータを処理するのに不適当である。
本研究では、ビッグデータ量とミューティデータフォーマットの実践的文脈において、従来のツールの処理効率とデータプロセスの汎用性における欠点を解決するために、ビッグデータ分析に基づく機械学習自然言語処理ツールを提案する。
ML-NLPツールを用いて、2018年から2024年までの公衆医療機器リコールデータベースに基づいて、医療機器リコール開始者を特定し、評価し、分析した。
以上の結果から,DBSCANクラスタリングアルゴリズムは,各リコールイニシアチブを特定の方法で表示することが可能であることが示唆された。
これに続いてテキスト類似性に基づくテキスト分類が行われ、実践者がリコール開始者のグループサイズを制御し、運用から戦術的・戦略的レベルへの管理的洞察を提供する。
本発明のML-NLPワークツールは、リコール開始者の特定詳細をキャプチャするだけでなく、既存の開始者の内的接続を解釈し、前方SCにおけるリスク識別及び評価のために実装することができる。
最後に,本論文は,いくつかの結論と今後の成果を提示するものである。
将来的には、医療機器リコールのためのより積極的なプラクティスとコントロールソリューションが期待されている。
関連論文リスト
- When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
大規模言語モデルの最後の隠れ状態からベクター表現が医療診断および予後に有効であることを示す。
我々は,異常な生理的データを表すため,ゼロショット設定の命令調整LDMに着目し,それらのユーティリティを特徴抽出器として評価する。
医学MLタスクでは生データの特徴が依然として有効であることが示唆されているが、ゼロショットLSM埋め込みは競争力のある結果を示している。
論文 参考訳(メタデータ) (2024-08-15T03:56:40Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
我々は,多センサデータから臨床的に有用な知見を合成するために,大規模言語モデルを活用する新しいアプローチを採っている。
うつ病や不安などの症状とデータの傾向がどのように関連しているかを,LSMを用いて推論する思考促進手法の連鎖を構築した。
GPT-4のようなモデルでは数値データの75%を正確に参照しており、臨床参加者は、この手法を用いて自己追跡データを解釈することへの強い関心を表明している。
論文 参考訳(メタデータ) (2023-11-21T23:53:27Z) - Shifting to Machine Supervision: Annotation-Efficient Semi and Self-Supervised Learning for Automatic Medical Image Segmentation and Classification [9.67209046726903]
我々は、自己教師型および半教師型学習の進歩を活用する新しいアプローチであるS4MIパイプラインを紹介する。
本研究は、これらの手法を3つの異なる医用画像データセット上で評価し、分類と分割作業の有効性を評価する。
注目すべきは、半教師付きアプローチはセグメンテーションにおいて優れた結果を示し、全データセットで50%少ないラベルを使用しながら、完全な教師付き手法よりも優れた結果を示したことだ。
論文 参考訳(メタデータ) (2023-11-17T04:04:29Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Machine Learning, Deep Learning and Data Preprocessing Techniques for Detection, Prediction, and Monitoring of Stress and Stress-related Mental Disorders: A Scoping Review [0.0]
メンタルストレスとそれに伴う精神障害(MD)は、公衆衛生上の重要な問題である。
機械学習(ML)の出現により、これらの問題を理解し、対処するための計算技術を活用する可能性がある。
本研究の目的は,精神ストレスとMDの検出,予測,分析に使用されるML方法論のスコープを検討することである。
論文 参考訳(メタデータ) (2023-08-08T22:47:12Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Machine learning-based clinical prediction modeling -- A practical guide
for clinicians [0.0]
機械学習や人工知能に関連する原稿の数は、ここ数年で指数関数的に増えている。
第1節では、機械学習の一般的な原理について解説する。
さらに,再サンプリング,オーバーフィッティング,モデル一般化性の重要性とモデル評価戦略を概観する。
論文 参考訳(メタデータ) (2020-06-23T20:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。