論文の概要: Improving the Validity and Practical Usefulness of AI/ML Evaluations Using an Estimands Framework
- arxiv url: http://arxiv.org/abs/2406.10366v1
- Date: Fri, 14 Jun 2024 18:47:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:52:09.664276
- Title: Improving the Validity and Practical Usefulness of AI/ML Evaluations Using an Estimands Framework
- Title(参考訳): Estimandsフレームワークを用いたAI/ML評価の有効性と実用性の改善
- Authors: Olivier Binette, Jerome P. Reiter,
- Abstract要約: 本稿では,国際臨床治験ガイドラインを応用した評価フレームワークを提案する。
このフレームワークは、評価の推測と報告のための体系的な構造を提供する。
我々は、このフレームワークが根底にある問題、その原因、潜在的な解決策を明らかにするのにどのように役立つかを実証する。
- 参考スコア(独自算出の注目度): 2.4861619769660637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Commonly, AI or machine learning (ML) models are evaluated on benchmark datasets. This practice supports innovative methodological research, but benchmark performance can be poorly correlated with performance in real-world applications -- a construct validity issue. To improve the validity and practical usefulness of evaluations, we propose using an estimands framework adapted from international clinical trials guidelines. This framework provides a systematic structure for inference and reporting in evaluations, emphasizing the importance of a well-defined estimation target. We illustrate our proposal on examples of commonly used evaluation methodologies - involving cross-validation, clustering evaluation, and LLM benchmarking - that can lead to incorrect rankings of competing models (rank reversals) with high probability, even when performance differences are large. We demonstrate how the estimands framework can help uncover underlying issues, their causes, and potential solutions. Ultimately, we believe this framework can improve the validity of evaluations through better-aligned inference, and help decision-makers and model users interpret reported results more effectively.
- Abstract(参考訳): 一般的に、AIまたは機械学習(ML)モデルは、ベンチマークデータセットで評価される。
このプラクティスは革新的な方法論の研究をサポートするが、ベンチマークのパフォーマンスは実世界のアプリケーションのパフォーマンスとあまり相関しない。
評価の妥当性と実用性を向上させるため,国際臨床試験ガイドラインを応用した評価フレームワークを提案する。
このフレームワークは、評価における推測と報告のための体系的な構造を提供し、明確に定義された推定対象の重要性を強調する。
本稿では, クロスバリデーション, クラスタリング評価, LLMベンチマークなどの一般的な評価手法の例として, 性能差が大きい場合でも, 競合モデル(ランクリバーサル)の不正なランク付けを高い確率で行うことができることを示す。
我々は、推定フレームワークが根底にある問題、その原因、潜在的な解決策を明らかにするのにどのように役立つかを実証する。
最終的に、このフレームワークは、より整合した推論によって評価の妥当性を改善し、意思決定者やモデル利用者が報告された結果をより効果的に解釈するのに役立つと信じている。
関連論文リスト
- Unveiling Context-Aware Criteria in Self-Assessing LLMs [28.156979106994537]
本研究では, 文脈認識基準(SALC)を各評価インスタンスに適した動的知識と統合した, 自己評価 LLM フレームワークを提案する。
経験的評価は,本手法が既存のベースライン評価フレームワークを著しく上回っていることを示す。
また,AlpacaEval2リーダボードにおけるLCWin-Rateの改善を,選好データ生成に使用する場合の12%まで改善した。
論文 参考訳(メタデータ) (2024-10-28T21:18:49Z) - OCDB: Revisiting Causal Discovery with a Comprehensive Benchmark and Evaluation Framework [21.87740178652843]
因果発見は透明性と信頼性を改善するための有望なアプローチを提供する。
本稿では,因果構造と因果効果の違いを評価するための指標を用いたフレキシブルな評価フレームワークを提案する。
実データに基づくOpen Causal Discovery Benchmark (OCDB)を導入し、公正な比較を促進し、アルゴリズムの最適化を促進する。
論文 参考訳(メタデータ) (2024-06-07T03:09:22Z) - FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models [36.273451767886726]
FreeEvalは、大規模言語モデルの信頼性と効率的な自動評価を可能にするために設計された、モジュール化されたスケーラブルなフレームワークである。
FreeEvalの統一された抽象化は、統合を単純化し、多様な評価方法論の透明性を改善します。
このフレームワークは、人間の評価やデータ汚染検出などのメタ評価技術を統合し、動的評価モジュールとともに、評価結果の公平性を高める。
論文 参考訳(メタデータ) (2024-04-09T04:17:51Z) - CheckEval: Robust Evaluation Framework using Large Language Model via Checklist [6.713203569074019]
大規模言語モデルを用いた新しい評価フレームワークであるCheckEvalを紹介する。
CheckEvalは、現在の評価方法における曖昧さと一貫性の課題に対処する。
論文 参考訳(メタデータ) (2024-03-27T17:20:39Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Towards Evaluating Transfer-based Attacks Systematically, Practically,
and Fairly [79.07074710460012]
ディープニューラルネットワーク(DNN)の敵対的脆弱性に大きな注目を集めている。
ブラックボックスDNNモデルを騙すための転送ベース手法が増えている。
30以上のメソッドを実装した転送ベースアタックベンチマーク(TA-Bench)を確立する。
論文 参考訳(メタデータ) (2023-11-02T15:35:58Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
FLASKは、人間に基づく評価とモデルに基づく評価の両方のためのきめ細かい評価プロトコルである。
モデル性能の全体像を得るためには,評価の微粒化が重要であることを実験的に観察する。
論文 参考訳(メタデータ) (2023-07-20T14:56:35Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
モデルベース最適化(MBO)では、マシンラーニングを使用して、(基底真理)オラクルと呼ばれるブラックボックス関数に対する報酬の尺度を最大化する候補を設計することに興味があります。
モデル検証中に基底オラクルに対する近似をトレーニングし、その代わりに使用することができるが、その評価は近似的であり、敵の例に対して脆弱である。
本手法は,外挿量を測定するために提案した評価フレームワークにカプセル化されている。
論文 参考訳(メタデータ) (2022-11-19T16:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。