A Neuro-Symbolic Benchmark Suite for Concept Quality and Reasoning Shortcuts
- URL: http://arxiv.org/abs/2406.10368v2
- Date: Tue, 29 Oct 2024 11:17:37 GMT
- Title: A Neuro-Symbolic Benchmark Suite for Concept Quality and Reasoning Shortcuts
- Authors: Samuele Bortolotti, Emanuele Marconato, Tommaso Carraro, Paolo Morettin, Emile van Krieken, Antonio Vergari, Stefano Teso, Andrea Passerini,
- Abstract summary: We introduce rsbench, a benchmark suite designed to systematically evaluate the impact of reasoning shortcuts on models.
Using rsbench, we highlight that obtaining high quality concepts in both purely neural and neuro-symbolic models is a far-from-solved problem.
- Score: 20.860617965394848
- License:
- Abstract: The advent of powerful neural classifiers has increased interest in problems that require both learning and reasoning. These problems are critical for understanding important properties of models, such as trustworthiness, generalization, interpretability, and compliance to safety and structural constraints. However, recent research observed that tasks requiring both learning and reasoning on background knowledge often suffer from reasoning shortcuts (RSs): predictors can solve the downstream reasoning task without associating the correct concepts to the high-dimensional data. To address this issue, we introduce rsbench, a comprehensive benchmark suite designed to systematically evaluate the impact of RSs on models by providing easy access to highly customizable tasks affected by RSs. Furthermore, rsbench implements common metrics for evaluating concept quality and introduces novel formal verification procedures for assessing the presence of RSs in learning tasks. Using rsbench, we highlight that obtaining high quality concepts in both purely neural and neuro-symbolic models is a far-from-solved problem. rsbench is available at: https://unitn-sml.github.io/rsbench.
Related papers
- Characterizing out-of-distribution generalization of neural networks: application to the disordered Su-Schrieffer-Heeger model [38.79241114146971]
We show how interpretability methods can increase trust in predictions of a neural network trained to classify quantum phases.
In particular, we show that we can ensure better out-of-distribution generalization in the complex classification problem.
This work is an example of how the systematic use of interpretability methods can improve the performance of NNs in scientific problems.
arXiv Detail & Related papers (2024-06-14T13:24:32Z) - IID Relaxation by Logical Expressivity: A Research Agenda for Fitting Logics to Neurosymbolic Requirements [50.57072342894621]
We discuss the benefits of exploiting known data dependencies and distribution constraints for Neurosymbolic use cases.
This opens a new research agenda with general questions about Neurosymbolic background knowledge and the expressivity required of its logic.
arXiv Detail & Related papers (2024-04-30T12:09:53Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts [21.743306538494043]
Reasoning Shortcuts can affect Neuro-Symbolic (NeSy) predictors.
They learn concepts consistent with symbolic knowledge by exploiting unintended semantics.
We propose to ensure NeSy models are aware of the semantic ambiguity of the concepts they learn.
arXiv Detail & Related papers (2024-02-19T15:54:36Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Great Truths are Always Simple: A Rather Simple Knowledge Encoder for
Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models [89.98762327725112]
Commonsense reasoning in natural language is a desired ability of artificial intelligent systems.
For solving complex commonsense reasoning tasks, a typical solution is to enhance pre-trained language models(PTMs) with a knowledge-aware graph neural network(GNN) encoder.
Despite the effectiveness, these approaches are built on heavy architectures, and can't clearly explain how external knowledge resources improve the reasoning capacity of PTMs.
arXiv Detail & Related papers (2022-05-04T01:27:36Z) - Pointer Value Retrieval: A new benchmark for understanding the limits of
neural network generalization [40.21297628440919]
We introduce a novel benchmark, Pointer Value Retrieval (PVR) tasks, that explore the limits of neural network generalization.
PVR tasks can consist of visual as well as symbolic inputs, each with varying levels of difficulty.
We demonstrate that this task structure provides a rich testbed for understanding generalization.
arXiv Detail & Related papers (2021-07-27T03:50:31Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
We propose a semantic parsing and reasoning-based Neuro-Symbolic Question Answering(NSQA) system.
NSQA achieves state-of-the-art performance on QALD-9 and LC-QuAD 1.0.
arXiv Detail & Related papers (2020-12-03T05:17:55Z) - Relational Neural Machines [19.569025323453257]
This paper presents a novel framework allowing jointly train the parameters of the learners and of a First-Order Logic based reasoner.
A Neural Machine is able recover both classical learning results in case of pure sub-symbolic learning, and Markov Logic Networks.
Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems.
arXiv Detail & Related papers (2020-02-06T10:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.