Green's function approach to interacting lattice polaritons and optical nonlinearities in subwavelength arrays of quantum emitters
- URL: http://arxiv.org/abs/2406.10387v1
- Date: Fri, 14 Jun 2024 19:32:13 GMT
- Title: Green's function approach to interacting lattice polaritons and optical nonlinearities in subwavelength arrays of quantum emitters
- Authors: Simon Panyella Pedersen, Georg M. Bruun, Thomas Pohl,
- Abstract summary: Sub-wavelength arrays of quantum emitters offer an efficient free-space approach to coherent light-matter.
We describe a diagrammatic Green's function approach that permits analytical investigations of nonlinear processes.
- Score: 0.08192907805418582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sub-wavelength arrays of quantum emitters offer an efficient free-space approach to coherent light-matter interfacing, using ultracold atoms or two-dimensional solid-state quantum materials. The combination of collectively suppressed photon-losses and emerging optical nonlinearities due to strong photon-coupling to mesoscopic numbers of emitters holds promise for generating nonclassical light and engineering effective interactions between freely propagating photons. While most studies have thus far relied on numerical simulations, we describe here a diagrammatic Green's function approach that permits analytical investigations of nonlinear processes. We illustrate the method by deriving a simple expression for the scattering matrix that describes photon-photon interactions in an extended two-dimensional array of quantum emitters, and reproduces the results of numerical simulations of coherently driven arrays. The approach yields intuitive insights into the nonlinear response of the system and offers a promising framework for a systematic development of a theory for interacting photons and many-body effects on collective radiance in two-dimensional arrays of quantum emitters.
Related papers
- Chiral Quantum-Optical Elements for Waveguide-QED with Sub-wavelength Rydberg-Atom Arrays [2.5652402930898988]
We describe an approach to achieve near-perfect unidirectional light-matter coupling to an effective quantum emitter formed by a subwavelength array of atoms in the Rydberg-blockade regime.
The described setup can function as a versatile nonlinear optical element in a free-space photonic quantum network with simple linear elements.
arXiv Detail & Related papers (2024-07-01T09:55:47Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantum nonlinear metasurfaces from dual arrays of ultracold atoms [0.4640835690336652]
We show how the coupling of light to more than a single atomic array can expand perspectives into the domain of quantum nonlinear optics.
The combination of two arrays is found to induce strong photon-photon interactions that can convert an incoming classical beam into highly antibunched light.
Such quantum metasurfaces open up new possibilities for coherently generating and manipulating nonclassical light.
arXiv Detail & Related papers (2022-01-17T17:47:11Z) - Classical-to-quantum transition in multimode nonlinear systems with
strong photon-photon coupling [12.067269037074292]
We investigate the classical-to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method.
This work presents a universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-11-18T07:26:57Z) - Self-Ordering of Individual Photons in Waveguide QED and Rydberg-Atom
Arrays [0.548253258922555]
We study the propagation of light through an optical waveguide that is chirally coupled to three-level quantum emitters.
We show that the additional laser-coupling to a third emitter state not only permits to control the properties of the bound state but can even eliminate it entirely.
We demonstrate this emerging photon-photon repulsion by analysing the quantum dynamics of multiple photons in large emitter arrays.
arXiv Detail & Related papers (2021-10-25T13:55:10Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum nonlinear metasurfaces [68.8204255655161]
We outline a general quantum theory of spontaneous photon-pair generation in arbitrary nonlinear photonic structures.
We discuss the first experimental results demonstrating photon-pair generation in a single nonlinear nanoantenna.
arXiv Detail & Related papers (2020-08-22T14:57:24Z) - Exploring complex graphs using three-dimensional quantum walks of
correlated photons [52.77024349608834]
We introduce a new paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks.
This novel testbed for the experimental exploration of multi-particle quantum walks on complex, highly connected graphs paves the way towards exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.
arXiv Detail & Related papers (2020-07-10T09:15:44Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Experimental reconstruction of the few-photon nonlinear scattering
matrix from a single quantum dot in a nanophotonic waveguide [5.673311327126229]
Coherent photon-emitter interfaces offer a way to mediate efficient nonlinear photon-photon interactions.
We experimentally study the case of a two-level emitter, a quantum dot, coupled to a single optical mode in a nanophotonic waveguide.
arXiv Detail & Related papers (2020-05-30T13:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.