論文の概要: BrainFounder: Towards Brain Foundation Models for Neuroimage Analysis
- arxiv url: http://arxiv.org/abs/2406.10395v2
- Date: Mon, 12 Aug 2024 21:36:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 22:15:08.192783
- Title: BrainFounder: Towards Brain Foundation Models for Neuroimage Analysis
- Title(参考訳): BrainFounder: 神経画像解析のための脳基礎モデルを目指して
- Authors: Joseph Cox, Peng Liu, Skylar E. Stolte, Yunchao Yang, Kang Liu, Kyle B. See, Huiwen Ju, Ruogu Fang,
- Abstract要約: 本研究は,医療基盤モデルの創出に向けた新しいアプローチを紹介する。
本稿では,視覚変換器を用いた2段階事前学習手法を提案する。
BrainFounderは、これまでの勝利ソリューションの成果を上回る、大幅なパフォーマンス向上を実演している。
- 参考スコア(独自算出の注目度): 6.5388528484686885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to interpret and analyze neurological data. This study introduces a novel approach towards the creation of medical foundation models by integrating a large-scale multi-modal magnetic resonance imaging (MRI) dataset derived from 41,400 participants in its own. Our method involves a novel two-stage pretraining approach using vision transformers. The first stage is dedicated to encoding anatomical structures in generally healthy brains, identifying key features such as shapes and sizes of different brain regions. The second stage concentrates on spatial information, encompassing aspects like location and the relative positioning of brain structures. We rigorously evaluate our model, BrainFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the complexity of the model and the volume of unlabeled training data derived from generally healthy brains, which enhances the accuracy and predictive capabilities of the model in complex neuroimaging tasks with MRI. The implications of this research provide transformative insights and practical applications in healthcare and make substantial steps towards the creation of foundation models for Medical AI. Our pretrained models and training code can be found at https://github.com/lab-smile/GatorBrain.
- Abstract(参考訳): 脳の健康研究の急成長する分野は、人工知能(AI)を活用して神経学的データを解釈し分析する。
本研究では,41,400人の参加者から得られた大規模マルチモーダル磁気共鳴画像(MRI)データセットを統合することにより,医療基盤モデルの構築に向けた新たなアプローチを提案する。
本稿では,視覚変換器を用いた2段階事前学習手法を提案する。
第1段階は、一般に健康な脳で解剖学的構造をコードし、異なる脳領域の形状や大きさなどの重要な特徴を特定することを目的としている。
第2段階は、位置や脳構造の相対的な位置といった側面を含む空間情報に集中する。
我々は、脳腫瘍分離(BraTS)課題とストロークv2.0(ATLAS v2.0)データセット後の解剖学的病変追跡(Anatomical Tracings of Lesions)を使用して、我々のモデルであるBrainFounderを厳格に評価する。
BrainFounderは、完全な教師付き学習を使用して、以前の勝利ソリューションの成果を上回る、大幅なパフォーマンス向上を示す。
以上の結果から,MRIを用いた複雑な神経画像タスクにおけるモデルの精度と予測能力を高めるため,モデルの複雑さと,一般に健康な脳から得られるラベルなしトレーニングデータの量の両方をスケールアップする効果が示唆された。
本研究の意義は、医療における変革的洞察と実践的応用を提供し、医療AIの基礎モデルの構築に向けて大きな一歩を踏み出したものである。
事前トレーニングされたモデルとトレーニングコードは、https://github.com/lab-smile/GatorBrain.orgにある。
関連論文リスト
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - Aligning brain functions boosts the decoding of visual semantics in
novel subjects [3.226564454654026]
脳の反応をビデオや静止画像に合わせることで脳の復号化を促進することを提案する。
提案手法はオブジェクト外デコード性能を最大75%向上させる。
また、テスト対象者に対して100分未満のデータが得られる場合、古典的な単一オブジェクトアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T15:55:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Data-Driven Network Neuroscience: On Data Collection and Benchmark [6.796086914275059]
本稿では,神経科学,機械学習,グラフ解析の交わりにおける潜在的な研究のための,機能的ヒト脳ネットワークデータの収集について述べる。
データセットは6つの異なるソースから始まり、4つの脳の状態をカバーし、合計で2,702人の被験者で構成されている。
論文 参考訳(メタデータ) (2022-11-11T02:14:28Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。