論文の概要: Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation
- arxiv url: http://arxiv.org/abs/2407.21328v1
- Date: Wed, 31 Jul 2024 04:32:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:51:29.042005
- Title: Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation
- Title(参考訳): 生涯脳MRI画像分割のための知識ガイド型プロンプト学習
- Authors: Lin Teng, Zihao Zhao, Jiawei Huang, Zehong Cao, Runqi Meng, Feng Shi, Dinggang Shen,
- Abstract要約: 本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
- 参考スコア(独自算出の注目度): 53.70131202548981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic and accurate segmentation of brain MR images throughout the human lifespan into tissue and structure is crucial for understanding brain development and diagnosing diseases. However, challenges arise from the intricate variations in brain appearance due to rapid early brain development, aging, and disorders, compounded by the limited availability of manually-labeled datasets. In response, we present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI. Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels, followed by the incorporation of knowledge-driven embeddings learned from image-text alignment into the models. The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes, enabling models to learn structural feature embeddings across diverse age groups. Experimental findings demonstrate the superiority and robustness of our proposed method, particularly noticeable when employing Swin UNETR as the backbone. Our approach achieves average DSC values of 95.17% and 94.19% for brain tissue and structure segmentation, respectively. Our code is available at https://github.com/TL9792/KGPL.
- Abstract(参考訳): 脳のMRI画像から組織や組織への自動的かつ正確な分割は、脳の発達と疾患の診断に不可欠である。
しかし、課題は、手動でラベル付けされたデータセットの限られた可用性によって、迅速な初期脳の発達、老化、障害による脳の外観の複雑な変化によって生じる。
そこで我々は,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,画像テキストアライメントから学習した知識駆動型埋め込みをモデルに組み込むことにより,大規模データセットと準最適ラベルを用いた事前訓練セグメンテーションモデルを提案する。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスのセマンティックな関係を捉え、モデルが様々な年齢グループにまたがる構造的特徴埋め込みを学習できるようにする。
Swin UNETR を背骨として用いた場合, 提案手法の優位性とロバスト性について実験的に検討した。
本手法は, 脳組織および組織分節の平均DSC値は95.17%, 94.19%である。
私たちのコードはhttps://github.com/TL9792/KGPLで公開されています。
関連論文リスト
- BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
本研究は,医療基盤モデルの創出に向けた新しいアプローチを紹介する。
本稿では,視覚変換器を用いた2段階事前学習手法を提案する。
BrainFounderは、これまでの勝利ソリューションの成果を上回る、大幅なパフォーマンス向上を実演している。
論文 参考訳(メタデータ) (2024-06-14T19:49:45Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Multi-task Collaborative Pre-training and Individual-adaptive-tokens
Fine-tuning: A Unified Framework for Brain Representation Learning [3.1453938549636185]
協調的事前学習と個別学習を組み合わせた統合フレームワークを提案する。
提案したMCIATはADHD-200データセット上で最先端の診断性能を実現する。
論文 参考訳(メタデータ) (2023-06-20T08:38:17Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Brain Tissue Segmentation Across the Human Lifespan via Supervised
Contrastive Learning [34.82366750668948]
深層学習モデルを用いて,脳組織をヒトの寿命全体(0~100歳)に分割する試みを初めて行った。
我々のモデルは脳組織を正確に分割し、既存の方法より優れています。
論文 参考訳(メタデータ) (2023-01-03T21:54:17Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Longitudinal Self-Supervised Learning [13.094393751939837]
グラウンド・トゥルース・ラベルは神経科学においてしばしば欠落しているか高価である。
本稿では,MRIと潜在画像表現の関連因子間の多変量写像を定式化することにより,歪みの新たな定義を提案する。
我々は、画像表現から脳年齢を乱すコサインロスを伴う標準的な自動符号化構造を用いて、LSSL(Longitudinal Self-Supervised Learning)というモデルを実装した。
論文 参考訳(メタデータ) (2020-06-12T03:35:17Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
fMRIデータセットは複雑でヘテロジニアスな時系列で構成されていることを示す。
深層学習と幾何学的深層学習の様々なモデリング手法を比較し,今後の研究の道を開く。
私たちは、私たちの方法論の進歩が最終的に、健康と病気の脳のダイナミクスをより微妙に理解することで、臨床的および計算学的に関連があることを期待しています。
論文 参考訳(メタデータ) (2020-02-29T18:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。