Characterizing the quantum properties of ultralight dark matter -- an open quantum systems approach
- URL: http://arxiv.org/abs/2406.10412v1
- Date: Fri, 14 Jun 2024 21:13:40 GMT
- Title: Characterizing the quantum properties of ultralight dark matter -- an open quantum systems approach
- Authors: Jose-Daniel Bernal, Ryan B. Petery, K. J. Joven, Swati Singh,
- Abstract summary: We present an open quantum systems approach that accomplishes this while providing intuition into the quantum nature of the detection process itself.
We show that this theoretical treatment has implications in uncovering signatures of the cosmological production mechanism of the UBDM field.
This work will help facilitate the creation of novel methods to extract astrophysically relevant information from correlation measurements.
- Score: 0.2678472239880052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining insight into the constituents of dark matter and their interactions with normal matter has inspired a wide range of experimental efforts. Several approaches, particularly those involving searches for ultralight bosonic dark matter (UBDM) fields, involve the use of quantum systems or measurements performed at the limits imposed by quantum mechanics. While a classical treatment of UBDM and its detectors is satisfactory, a fully quantum description would assist in developing future detection strategies. Here, we present an open quantum systems approach that accomplishes this while providing intuition into the quantum nature of the detection process itself. Furthermore, we apply the quantum theory of optical coherence to characterize the statistical properties of the UBDM field. Using representative examples, we show that this theoretical treatment has implications in uncovering signatures of the cosmological production mechanism of the UBDM field and its galactic merger history. By adapting tools from quantum optics, this work will help facilitate the creation of novel methods to extract astrophysically relevant information from correlation measurements.
Related papers
- Direct Characteristic-Function Tomography of the Quantum States of
Quantum Fields [5.145146101802871]
We propose a strategy for implementing a direct readout of the symmetric characteristic function of the quantum states of quantum fields.
This strategy may serve as an essential in understanding and optimizing the control of quantum fields for relativistic quantum information applications.
arXiv Detail & Related papers (2023-10-20T14:15:14Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Continuous-variable quantum optics and resource theory for ultrafast
semiconductor spectroscopy [0.0]
We focus on multichannel homodyne detection as a powerful tool to measure the quantum coherence and the full density matrix of a polariton system.
By monitoring the temporal decay of quantum coherence in the polariton condensate, we observe coherence times exceeding the nanosecond scale.
The combination of tailored resource quantifiers and ultrafast spectroscopy techniques presented here paves the way for future applications of quantum information technologies.
arXiv Detail & Related papers (2023-06-02T13:56:47Z) - Intrinsic relationships of Quantum Resource Theories and their roles in
Quantum Metrology [0.0]
We focus on the resource theories of entanglement, discord-like quantum correlations, and quantum coherence.
This thesis includes also the contributions on the dynamics of these quantum resources in various models of open quantum systems.
arXiv Detail & Related papers (2022-11-15T08:21:55Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Modelling Markovian light-matter interactions for quantum optical
devices in the solid state [0.0]
I analyze fundamental components and processes for quantum optical devices with a focus on solid-state quantum systems.
I make heavy use of an analytic quantum trajectories approach applied to a general Markovian master equation of an optically-active quantum system.
arXiv Detail & Related papers (2021-05-13T23:00:34Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.