Differentiable Predictive Control for Large-Scale Urban Road Networks
- URL: http://arxiv.org/abs/2406.10433v1
- Date: Fri, 14 Jun 2024 22:42:02 GMT
- Title: Differentiable Predictive Control for Large-Scale Urban Road Networks
- Authors: Renukanandan Tumu, Wenceslao Shaw Cortez, Ján Drgoňa, Draguna L. Vrabie, Sonja Glavaski,
- Abstract summary: Transportation is a major contributor to CO2 emissions.
This paper presents a novel approach to traffic network control using Differentiable Predictive Control (DPC)
Our approach demonstrates a 4 order of magnitude reduction in computation time and an up to 37% improvement in traffic performance.
- Score: 1.3414298287600035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transportation is a major contributor to CO2 emissions, making it essential to optimize traffic networks to reduce energy-related emissions. This paper presents a novel approach to traffic network control using Differentiable Predictive Control (DPC), a physics-informed machine learning methodology. We base our model on the Macroscopic Fundamental Diagram (MFD) and the Networked Macroscopic Fundamental Diagram (NMFD), offering a simplified representation of citywide traffic networks. Our approach ensures compliance with system constraints by construction. In empirical comparisons with existing state-of-the-art Model Predictive Control (MPC) methods, our approach demonstrates a 4 order of magnitude reduction in computation time and an up to 37% improvement in traffic performance. Furthermore, we assess the robustness of our controller to scenario shifts and find that it adapts well to changes in traffic patterns. This work proposes more efficient traffic control methods, particularly in large-scale urban networks, and aims to mitigate emissions and alleviate congestion in the future.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems [11.655502119510134]
Complex urban road networks with high vehicle occupancy frequently face severe traffic congestion.
Most current traffic light management systems rely on human-crafted decisions, which may not adapt well to diverse traffic patterns.
We introduce a novel and practical framework to formulate the optimization of such design components using an offline meta black-box optimization.
arXiv Detail & Related papers (2024-08-14T06:57:58Z) - Traffic signal optimization in large-scale urban road networks: an adaptive-predictive controller using Ising models [4.408586742026574]
We propose a control method called AMPIC that guarantees both scalability and optimality.
The proposed method employs model predictive control to solve an optimal control problem at each control interval with explicit consideration of a predictive model of vehicle flow.
Results show that AMPIC enables faster vehicle cruising speed with less waiting time than that achieved by classical control methods.
arXiv Detail & Related papers (2024-06-06T02:20:34Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Model-free Learning of Corridor Clearance: A Near-term Deployment
Perspective [5.39179984304986]
An emerging public health application of connected and automated vehicle (CAV) technologies is to reduce response times of emergency medical service (EMS) by indirectly coordinating traffic.
Existing research on this topic often overlooks the impact of EMS vehicle disruptions on regular traffic, assumes 100% CAV penetration, relies on real-time traffic signal timing data and queue lengths at intersections, and makes various assumptions about traffic settings when deriving optimal model-based CAV control strategies.
To overcome these challenges and enhance real-world applicability in near-term, we propose a model-free approach employing deep reinforcement learning (DRL) for designing CAV control strategies
arXiv Detail & Related papers (2023-12-16T06:08:53Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - Optimal transport in multilayer networks [68.8204255655161]
We propose a model where optimal flows on different layers contribute differently to the total cost to be minimized.
As an application, we consider transportation networks, where each layer is associated to a different transportation system.
We show an example of this result on the real 2-layer network of the city of Bordeaux with bus and tram, where in certain regimes the presence of the tram network significantly unburdens the traffic on the road network.
arXiv Detail & Related papers (2021-06-14T07:33:09Z) - Network-wide traffic signal control optimization using a multi-agent
deep reinforcement learning [20.385286762476436]
Inefficient traffic control may cause numerous problems such as traffic congestion and energy waste.
This paper proposes a novel multi-agent reinforcement learning method, named KS-DDPG, to achieve optimal control by enhancing the cooperation between traffic signals.
arXiv Detail & Related papers (2021-04-20T12:53:08Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
We study the ability of autonomous vehicles to improve the throughput of a bottleneck using a fully decentralized control scheme in a mixed autonomy setting.
We apply multi-agent reinforcement algorithms to this problem and demonstrate that significant improvements in bottleneck throughput, from 20% at a 5% penetration rate to 33% at a 40% penetration rate, can be achieved.
arXiv Detail & Related papers (2020-10-30T22:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.