An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
- URL: http://arxiv.org/abs/2408.07327v1
- Date: Wed, 14 Aug 2024 06:57:58 GMT
- Title: An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
- Authors: Taeyoung Yun, Kanghoon Lee, Sujin Yun, Ilmyung Kim, Won-Woo Jung, Min-Cheol Kwon, Kyujin Choi, Yoohyeon Lee, Jinkyoo Park,
- Abstract summary: Complex urban road networks with high vehicle occupancy frequently face severe traffic congestion.
Most current traffic light management systems rely on human-crafted decisions, which may not adapt well to diverse traffic patterns.
We introduce a novel and practical framework to formulate the optimization of such design components using an offline meta black-box optimization.
- Score: 11.655502119510134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complex urban road networks with high vehicle occupancy frequently face severe traffic congestion. Designing an effective strategy for managing multiple traffic lights plays a crucial role in managing congestion. However, most current traffic light management systems rely on human-crafted decisions, which may not adapt well to diverse traffic patterns. In this paper, we delve into two pivotal design components of the traffic light management system that can be dynamically adjusted to various traffic conditions: phase combination and phase time allocation. While numerous studies have sought an efficient strategy for managing traffic lights, most of these approaches consider a fixed traffic pattern and are limited to relatively small road networks. To overcome these limitations, we introduce a novel and practical framework to formulate the optimization of such design components using an offline meta black-box optimization. We then present a simple yet effective method to efficiently find a solution for the aforementioned problem. In our framework, we first collect an offline meta dataset consisting of pairs of design choices and corresponding congestion measures from various traffic patterns. After collecting the dataset, we employ the Attentive Neural Process (ANP) to predict the impact of the proposed design on congestion across various traffic patterns with well-calibrated uncertainty. Finally, Bayesian optimization, with ANP as a surrogate model, is utilized to find an optimal design for unseen traffic patterns through limited online simulations. Our experiment results show that our method outperforms state-of-the-art baselines on complex road networks in terms of the number of waiting vehicles. Surprisingly, the deployment of our method into a real-world traffic system was able to improve traffic throughput by 4.80\% compared to the original strategy.
Related papers
- Scalable Multi-Objective Optimization for Robust Traffic Signal Control in Uncertain Environments [7.504173535502228]
This paper presents a scalable multi-objective optimization approach for robust traffic signal control in dynamic and uncertain urban environments.
We propose an algorithm named Adaptive Hybrid Multi-Objective Optimization Algorithm (AHMOA), which addresses the uncertainties of city traffic.
Simulations are conducted in different cities including Manhattan, Paris, Sao Paulo, and Istanbul.
arXiv Detail & Related papers (2024-09-20T10:42:16Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
This paper presents a framework which allows to efficiently simulate and optimize traffic flow in a large roads' network with hundreds of vehicles.
The framework leverages on an Answer Set Programming (ASP) encoding to formally describe the movements of vehicles inside a network.
It is then possible to optimize the routes of vehicles inside the network to reduce a range of relevant metrics.
arXiv Detail & Related papers (2022-08-05T10:50:38Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
We propose a DRL-based signal control system that adjusts traffic signals according to the current congestion situation on intersections.
To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks.
arXiv Detail & Related papers (2022-06-28T02:46:20Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
This paper develops a learning-based algorithm to deal with complex intersections with mixed traffic flows.
We first consider different velocity models for green and red lights in the training process and use a finite state machine to handle different modes of light transformation.
Then we design different types of distance constraints for vehicles, traffic lights, pedestrians, bicycles respectively and formulize the constrained optimal control problems.
arXiv Detail & Related papers (2021-08-30T07:55:32Z) - Optimal transport in multilayer networks [68.8204255655161]
We propose a model where optimal flows on different layers contribute differently to the total cost to be minimized.
As an application, we consider transportation networks, where each layer is associated to a different transportation system.
We show an example of this result on the real 2-layer network of the city of Bordeaux with bus and tram, where in certain regimes the presence of the tram network significantly unburdens the traffic on the road network.
arXiv Detail & Related papers (2021-06-14T07:33:09Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.