Articulatory Phonetics Informed Controllable Expressive Speech Synthesis
- URL: http://arxiv.org/abs/2406.10514v1
- Date: Sat, 15 Jun 2024 05:37:04 GMT
- Title: Articulatory Phonetics Informed Controllable Expressive Speech Synthesis
- Authors: Zehua Kcriss Li, Meiying Melissa Chen, Yi Zhong, Pinxin Liu, Zhiyao Duan,
- Abstract summary: We explore expressive speech synthesis through the lens of articulatory phonetics.
We record a high-quality speech dataset named GTR-Voice, featuring 20 Chinese sentences articulated by a professional voice actor.
We verify the framework and GTR annotations through automatic classification and listening tests, and demonstrate precise controllability on two fine-tuned expressive TTS models.
- Score: 14.157690391680745
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Expressive speech synthesis aims to generate speech that captures a wide range of para-linguistic features, including emotion and articulation, though current research primarily emphasizes emotional aspects over the nuanced articulatory features mastered by professional voice actors. Inspired by this, we explore expressive speech synthesis through the lens of articulatory phonetics. Specifically, we define a framework with three dimensions: Glottalization, Tenseness, and Resonance (GTR), to guide the synthesis at the voice production level. With this framework, we record a high-quality speech dataset named GTR-Voice, featuring 20 Chinese sentences articulated by a professional voice actor across 125 distinct GTR combinations. We verify the framework and GTR annotations through automatic classification and listening tests, and demonstrate precise controllability along the GTR dimensions on two fine-tuned expressive TTS models. We open-source the dataset and TTS models.
Related papers
- EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions [152.41217651729738]
GPT-4o is an omni-modal model that enables vocal conversations with diverse emotions and tones.
We propose EMOVA to enable Large Language Models with end-to-end speech capabilities.
For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks.
arXiv Detail & Related papers (2024-09-26T16:44:02Z) - FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs [63.8261207950923]
FunAudioLLM is a model family designed to enhance natural voice interactions between humans and large language models (LLMs)
At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity.
The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub.
arXiv Detail & Related papers (2024-07-04T16:49:02Z) - Coding Speech through Vocal Tract Kinematics [5.0751585360524425]
Articulatory features are traces of kinematic shapes of vocal tract articulators and source features, which are intuitively interpretable and controllable.
Speaker embedding is effectively disentangled from articulations, which enables accent-perserving zero-shot voice conversion.
arXiv Detail & Related papers (2024-06-18T18:38:17Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
We introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis.
This dataset includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles.
We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders.
arXiv Detail & Related papers (2023-08-10T17:41:19Z) - Text-driven Talking Face Synthesis by Reprogramming Audio-driven Models [64.14812728562596]
We present a method for reprogramming pre-trained audio-driven talking face synthesis models to operate in a text-driven manner.
We can easily generate face videos that articulate the provided textual sentences.
arXiv Detail & Related papers (2023-06-28T08:22:53Z) - Make-A-Voice: Unified Voice Synthesis With Discrete Representation [77.3998611565557]
Make-A-Voice is a unified framework for synthesizing and manipulating voice signals from discrete representations.
We show that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models.
arXiv Detail & Related papers (2023-05-30T17:59:26Z) - Fine-grained Noise Control for Multispeaker Speech Synthesis [3.449700218265025]
A text-to-speech (TTS) model typically factorizes speech attributes such as content, speaker and prosody into disentangled representations.
Recent works aim to additionally model the acoustic conditions explicitly, in order to disentangle the primary speech factors.
arXiv Detail & Related papers (2022-04-11T13:13:55Z) - Enhancing audio quality for expressive Neural Text-to-Speech [8.199224915764672]
We present a set of techniques that can be leveraged to enhance the signal quality of a highly-expressive voice without the use of additional data.
We show that, when combined, these techniques greatly closed the gap in perceived naturalness between the baseline system and recordings by 39% in terms of MUSHRA scores for an expressive celebrity voice.
arXiv Detail & Related papers (2021-08-13T14:32:39Z) - Limited Data Emotional Voice Conversion Leveraging Text-to-Speech:
Two-stage Sequence-to-Sequence Training [91.95855310211176]
Emotional voice conversion aims to change the emotional state of an utterance while preserving the linguistic content and speaker identity.
We propose a novel 2-stage training strategy for sequence-to-sequence emotional voice conversion with a limited amount of emotional speech data.
The proposed framework can perform both spectrum and prosody conversion and achieves significant improvement over the state-of-the-art baselines in both objective and subjective evaluation.
arXiv Detail & Related papers (2021-03-31T04:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.