論文の概要: Self Pre-training with Topology- and Spatiality-aware Masked Autoencoders for 3D Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2406.10519v1
- Date: Sat, 15 Jun 2024 06:15:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:02:58.976550
- Title: Self Pre-training with Topology- and Spatiality-aware Masked Autoencoders for 3D Medical Image Segmentation
- Title(参考訳): 3次元医用画像セグメンテーションのためのトポロジーと空間性を考慮したマスケードオートエンコーダによる自己事前学習
- Authors: Pengfei Gu, Yejia Zhang, Huimin Li, Hongxiao Wang, Yizhe Zhang, Chaoli Wang, Danny Z. Chen,
- Abstract要約: Masked Autoencoders (MAEs) は、自然および医学的な画像解析問題に対する事前訓練型ビジョントランスフォーマー (ViTs) に有効であることが示されている。
既存のMAE事前学習手法は、ViTアーキテクチャで特別に開発されたが、幾何学的形状や空間情報をキャプチャする能力は欠けていた。
本稿では,3次元医用画像セグメンテーションのための自己事前トレーニング(すなわち,同じターゲットデータセット上で事前トレーニングされたモデル)のための既知のMAEの新たな拡張を提案する。
- 参考スコア(独自算出の注目度): 19.556735841557597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Masked Autoencoders (MAEs) have been shown to be effective in pre-training Vision Transformers (ViTs) for natural and medical image analysis problems. By reconstructing missing pixel/voxel information in visible patches, a ViT encoder can aggregate contextual information for downstream tasks. But, existing MAE pre-training methods, which were specifically developed with the ViT architecture, lack the ability to capture geometric shape and spatial information, which is critical for medical image segmentation tasks. In this paper, we propose a novel extension of known MAEs for self pre-training (i.e., models pre-trained on the same target dataset) for 3D medical image segmentation. (1) We propose a new topological loss to preserve geometric shape information by computing topological signatures of both the input and reconstructed volumes, learning geometric shape information. (2) We introduce a pre-text task that predicts the positions of the centers and eight corners of 3D crops, enabling the MAE to aggregate spatial information. (3) We extend the MAE pre-training strategy to a hybrid state-of-the-art (SOTA) medical image segmentation architecture and co-pretrain it alongside the ViT. (4) We develop a fine-tuned model for downstream segmentation tasks by complementing the pre-trained ViT encoder with our pre-trained SOTA model. Extensive experiments on five public 3D segmentation datasets show the effectiveness of our new approach.
- Abstract(参考訳): Masked Autoencoders (MAEs) は、自然および医学的な画像解析問題に対する事前訓練型ビジョントランスフォーマー (ViTs) に有効であることが示されている。
見えないピクセル/ボクセル情報を可視パッチで再構築することにより、ViTエンコーダは下流タスクのコンテキスト情報を集約することができる。
しかし、ViTアーキテクチャで特別に開発された既存のMAE事前学習手法では、医用画像分割作業において重要な幾何学的形状や空間情報をキャプチャする能力が欠如している。
本稿では、3次元医用画像セグメンテーションのための自己事前トレーニング(すなわち、同じターゲットデータセット上で事前トレーニングされたモデル)のための既知のMAEの新たな拡張を提案する。
1) 入力および再構成ボリュームのトポロジ的シグネチャを計算し, 幾何学的形状情報を学習することで, 幾何学的形状情報を保存する新しいトポロジ的損失を提案する。
2)3次元作物の中心と8つの角の位置を予測し,空間情報を収集するプリテキストタスクを導入する。
(3) 医用画像分割アーキテクチャ(SOTA)にMAE事前訓練戦略を拡張し,ViTと併用して事前訓練を行う。
(4) 学習済みのVTエンコーダと学習済みのSOTAモデルを補完することにより,下流のセグメンテーションタスクの微調整モデルを開発する。
5つのパブリックな3次元セグメンテーションデータセットに対する大規模な実験は、我々の新しいアプローチの有効性を示している。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - MiM: Mask in Mask Self-Supervised Pre-Training for 3D Medical Image Analysis [9.227314308722047]
Mask AutoEncoder (MAE) for feature pre-trainingは、様々な医療ビジョンタスクにViTの可能性を解き放つことができる。
本研究では,3次元医用画像の事前学習フレームワークであるMask in Mask(MiM)を提案する。
論文 参考訳(メタデータ) (2024-04-24T01:14:33Z) - Primitive Geometry Segment Pre-training for 3D Medical Image
Segmentation [12.251689154843342]
本稿では,PrimGeoSeg(PrimGeoSeg)法を提案する。
PrimGeoSegは手動のデータ収集やアノテーションなしでより正確で効率的な3D画像分割を行う。
論文 参考訳(メタデータ) (2024-01-08T04:37:35Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - UNetFormer: A Unified Vision Transformer Model and Pre-Training
Framework for 3D Medical Image Segmentation [14.873473285148853]
UNetFormerと呼ばれる2つのアーキテクチャで構成され,3D Swin TransformerベースのエンコーダとConal Neural Network(CNN)とTransformerベースのデコーダを備えている。
提案モデルでは, 5つの異なる解像度でのスキップ接続により, エンコーダをデコーダにリンクする。
本稿では,ランダムにマスクされたトークンを予測する学習を通じて,エンコーダバックボーンの自己教師付き事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-01T17:38:39Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - Deep Learning of Unified Region, Edge, and Contour Models for Automated
Image Segmentation [2.0305676256390934]
畳み込みニューラルネットワーク(CNN)は,自動セグメンテーションパイプラインの設計において注目を集めている。
CNNベースのモデルは、生の画像データから抽象的な特徴を学ぶには十分だが、それらのパフォーマンスは、適切なトレーニングデータセットの可用性とサイズに依存している。
本稿では,これらの問題に対処する新しい手法を考案し,完全自動セマンティックセマンティックセグメンテーションのための堅牢な表現学習フレームワークを構築した。
論文 参考訳(メタデータ) (2020-06-23T02:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。