論文の概要: We Care: Multimodal Depression Detection and Knowledge Infused Mental Health Therapeutic Response Generation
- arxiv url: http://arxiv.org/abs/2406.10561v1
- Date: Sat, 15 Jun 2024 08:41:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 23:43:29.629973
- Title: We Care: Multimodal Depression Detection and Knowledge Infused Mental Health Therapeutic Response Generation
- Title(参考訳): We Care:マルチモーダル・デプレッション検出と知識注入によるメンタルヘルス・セラピー・レスポンス生成
- Authors: Palash Moon, Pushpak Bhattacharyya,
- Abstract要約: 拡張D-vlogデータセットは1,261のYouTube vlogのコレクションを含む。
本稿では,認知行動療法(Cognitive Behavioral Therapy, CBT)をベースとした, メンタルヘルス患者の初期接触として機能する仮想エージェントについて紹介する。
私たちのMistralモデルは歪み評価と分類で70.1%、30.9%、ベルトスコア88.7%を達成しました。
- 参考スコア(独自算出の注目度): 41.09752906121257
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The detection of depression through non-verbal cues has gained significant attention. Previous research predominantly centred on identifying depression within the confines of controlled laboratory environments, often with the supervision of psychologists or counsellors. Unfortunately, datasets generated in such controlled settings may struggle to account for individual behaviours in real-life situations. In response to this limitation, we present the Extended D-vlog dataset, encompassing a collection of 1, 261 YouTube vlogs. Additionally, the emergence of large language models (LLMs) like GPT3.5, and GPT4 has sparked interest in their potential they can act like mental health professionals. Yet, the readiness of these LLM models to be used in real-life settings is still a concern as they can give wrong responses that can harm the users. We introduce a virtual agent serving as an initial contact for mental health patients, offering Cognitive Behavioral Therapy (CBT)-based responses. It comprises two core functions: 1. Identifying depression in individuals, and 2. Delivering CBT-based therapeutic responses. Our Mistral model achieved impressive scores of 70.1% and 30.9% for distortion assessment and classification, along with a Bert score of 88.7%. Moreover, utilizing the TVLT model on our Multimodal Extended D-vlog Dataset yielded outstanding results, with an impressive F1-score of 67.8%
- Abstract(参考訳): 非言語的手がかりによる抑うつの検出は注目されている。
それまでの研究は主に、制御された実験室の環境の中でうつ病を識別することに集中しており、心理学者やカウンセラーの監督が中心であった。
残念ながら、このような制御された設定で生成されたデータセットは、現実の状況における個々の振る舞いを判断するのに苦労する可能性がある。
この制限に対応するために、1,261のYouTube vlogのコレクションを含む拡張D-vlogデータセットを提示する。
さらに、GPT3.5やGPT4のような大きな言語モデル(LLM)が出現し、メンタルヘルスの専門家のように振る舞う可能性への関心が高まっている。
しかし、これらのLLMモデルの実際の設定で使用する準備が整っていることは、ユーザを傷つける可能性のある間違ったレスポンスを与えることができるため、依然として懸念事項である。
本稿では,認知行動療法(Cognitive Behavioral Therapy, CBT)をベースとした, メンタルヘルス患者の初期接触として機能する仮想エージェントについて紹介する。
コア関数は2つある。
1.個人におけるうつ病の特定、及び
CBTに基づく治療反応の提供
私たちのMistralモデルは歪み評価と分類で70.1%、30.9%、ベルトスコア88.7%を達成しました。
さらに、Multimodal Extended D-vlog Dataset上でのTVLTモデルの利用は、F1スコア67.8%の優れた結果を得た。
関連論文リスト
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - AI-Driven Early Mental Health Screening with Limited Data: Analyzing Selfies of Pregnant Women [32.514036618021244]
うつ病や不安障害は世界中で何百万もの人に影響を与え、精神疾患の重荷に大きく貢献する。
早期スクリーニングは、精神疾患のタイムリーな同定が治療成績を大幅に改善するので、効果的な介入に不可欠である。
本研究は、顔中心の自撮りを与えられたユビキタスな抑うつ不安スクリーニングのためのAIモデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-10-07T19:34:25Z) - LMVD: A Large-Scale Multimodal Vlog Dataset for Depression Detection in the Wild [35.64843242574305]
野生におけるうつ病認識のための大規模マルチモーダルvlogデータセット(LMVD)が構築されている。
個人の非言語行動を学ぶためのMDDformerと呼ばれる新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-09T01:27:10Z) - Assessing ML Classification Algorithms and NLP Techniques for Depression Detection: An Experimental Case Study [0.6524460254566905]
うつ病は世界中で何百万人もの人々に影響を与えており、最も一般的な精神疾患の1つとなっている。
近年の研究では、機械学習(ML)と自然言語処理(NLP)のツールや技術がうつ病の診断に広く用いられていることが証明されている。
しかし, 外傷後ストレス障害 (PTSD) などの他の症状が存在するうつ病検出アプローチの評価には, 依然としていくつかの課題がある。
論文 参考訳(メタデータ) (2024-04-03T19:45:40Z) - Detecting the Clinical Features of Difficult-to-Treat Depression using
Synthetic Data from Large Language Models [0.20971479389679337]
我々は,日常的に収集された物語(自由テキスト)電子健康記録データを問うことができるLarge Language Model(LLM)ベースのツールの開発を目指している。
LLM生成合成データ(GPT3.5)と非最大抑圧(NMS)アルゴリズムを用いてBERTに基づくスパン抽出モデルを訓練する。
以上の結果から,20因子のセットによる臨床データによる総合成績 (0.70 F1) と重要なDTDのサブセットにおける高いパフォーマンス (0.85 F1 と 0.95 の精度) が得られた。
論文 参考訳(メタデータ) (2024-02-12T13:34:33Z) - Mental Health Diagnosis in the Digital Age: Harnessing Sentiment
Analysis on Social Media Platforms upon Ultra-Sparse Feature Content [3.6195994708545016]
3次元構造を持つ新しい意味的特徴前処理手法を提案する。
強化されたセマンティック機能により、精神障害を予測および分類するために機械学習モデルを訓練する。
提案手法は,7つのベンチマークモデルと比較して,大幅な性能向上を示した。
論文 参考訳(メタデータ) (2023-11-09T00:15:06Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。