論文の概要: Assessing ML Classification Algorithms and NLP Techniques for Depression Detection: An Experimental Case Study
- arxiv url: http://arxiv.org/abs/2404.04284v1
- Date: Wed, 3 Apr 2024 19:45:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 23:46:55.323396
- Title: Assessing ML Classification Algorithms and NLP Techniques for Depression Detection: An Experimental Case Study
- Title(参考訳): 抑うつ検出のためのML分類アルゴリズムとNLP手法の評価:実験的検討
- Authors: Giuliano Lorenzoni, Cristina Tavares, Nathalia Nascimento, Paulo Alencar, Donald Cowan,
- Abstract要約: うつ病は世界中で何百万人もの人々に影響を与えており、最も一般的な精神疾患の1つとなっている。
近年の研究では、機械学習(ML)と自然言語処理(NLP)のツールや技術がうつ病の診断に広く用いられていることが証明されている。
しかし, 外傷後ストレス障害 (PTSD) などの他の症状が存在するうつ病検出アプローチの評価には, 依然としていくつかの課題がある。
- 参考スコア(独自算出の注目度): 0.6524460254566905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since Depression diagnosis is highly dependent on expert professionals and is time-consuming. Recent research has evidenced that machine learning (ML) and Natural Language Processing (NLP) tools and techniques have significantly bene ted the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms. This paper tackels such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices. The case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD. Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model.
- Abstract(参考訳): うつ病は世界中で何百万人もの人々に影響を与えており、最も一般的な精神疾患の1つとなっている。
早期の精神障害検出は、公衆衛生機関のコストを削減し、他の主要な合併症を防ぐことができる。
さらに、うつ病の診断は専門家に大きく依存し、時間を要するため、専門職の不足も非常に懸念されている。
近年の研究では、機械学習(ML)と自然言語処理(NLP)のツールや技術がうつ病の診断を著しく妨げていることが証明されている。
しかし, 外傷後ストレス障害 (PTSD) などの他の症状が存在するうつ病検出アプローチの評価には, 依然としていくつかの課題がある。
これらの課題には、データクリーニングと前処理技術、特徴選択、適切なML分類アルゴリズムといった観点から代替品を評価することが含まれる。
本稿では,データクリーニングや前処理,特徴選択,パラメータ設定,モデル選択など,さまざまなML分類器を比較するケーススタディに基づいて,このような評価を行う。
このケーススタディは、うつ病、不安、PTSDなどの精神疾患の診断を支援するために設計された、Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ)データセットに基づいている。
代替技術の評価に加えて、Random ForestモデルとXGBoostモデルで84%の精度でモデルを構築することができました。
関連論文リスト
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - A BERT-Based Summarization approach for depression detection [1.7363112470483526]
うつ病は世界中で流行する精神疾患であり、対処されないと深刻な反感を引き起こす可能性がある。
機械学習と人工知能は、さまざまなデータソースからのうつ病指標を自律的に検出することができる。
本研究では,入力テキストの長さと複雑さを低減させる前処理手法として,テキスト要約を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:14:34Z) - Depression Detection and Analysis using Large Language Models on Textual and Audio-Visual Modalities [25.305909441170993]
うつ病は公衆衛生上の重大な問題であり、個人の心理的健康に大きな影響を与えている。
診断されていない場合、うつ病は重篤な健康問題を引き起こし、身体的に現れて自殺に至る。
論文 参考訳(メタデータ) (2024-07-08T17:00:51Z) - Depression Detection on Social Media with Large Language Models [23.075317886505193]
抑うつ検出は、ソーシャルメディア上の投稿履歴を分析して、個人が抑うつに苦しむかどうかを判断することを目的としている。
本稿では,医学的知識と大規模言語モデルの最近の進歩を融合した,DORISと呼ばれる新規なうつ病検出システムを提案する。
論文 参考訳(メタデータ) (2024-03-16T01:01:16Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Multimodal Depression Severity Prediction from medical bio-markers using
Machine Learning Tools and Technologies [0.0]
うつ病は世界中の精神疾患の主要な原因となっている。
近年,うつ病の診断とステージ予測の自動化に行動的手がかりが用いられている。
ラベル付き行動データセットの欠如と、膨大な量のバリエーションが、タスクを達成する上で大きな課題であることが証明されている。
論文 参考訳(メタデータ) (2020-09-11T20:44:28Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。