Scale Equivariant Graph Metanetworks
- URL: http://arxiv.org/abs/2406.10685v2
- Date: Wed, 30 Oct 2024 12:45:18 GMT
- Title: Scale Equivariant Graph Metanetworks
- Authors: Ioannis Kalogeropoulos, Giorgos Bouritsas, Yannis Panagakis,
- Abstract summary: This paper pertains to an emerging machine learning paradigm: learning functions whose inputs are functions themselves.
We propose $textitScale Equivariant Graph MetaNetworks - ScaleGMNs$, a framework that adapts the Graph Metanetwork (message-passing) paradigm by incorporating scaling symmetries.
- Score: 20.445135424921908
- License:
- Abstract: This paper pertains to an emerging machine learning paradigm: learning higher-order functions, i.e. functions whose inputs are functions themselves, $\textit{particularly when these inputs are Neural Networks (NNs)}$. With the growing interest in architectures that process NNs, a recurring design principle has permeated the field: adhering to the permutation symmetries arising from the connectionist structure of NNs. $\textit{However, are these the sole symmetries present in NN parameterizations}$? Zooming into most practical activation functions (e.g. sine, ReLU, tanh) answers this question negatively and gives rise to intriguing new symmetries, which we collectively refer to as $\textit{scaling symmetries}$, that is, non-zero scalar multiplications and divisions of weights and biases. In this work, we propose $\textit{Scale Equivariant Graph MetaNetworks - ScaleGMNs}$, a framework that adapts the Graph Metanetwork (message-passing) paradigm by incorporating scaling symmetries and thus rendering neuron and edge representations equivariant to valid scalings. We introduce novel building blocks, of independent technical interest, that allow for equivariance or invariance with respect to individual scalar multipliers or their product and use them in all components of ScaleGMN. Furthermore, we prove that, under certain expressivity conditions, ScaleGMN can simulate the forward and backward pass of any input feedforward neural network. Experimental results demonstrate that our method advances the state-of-the-art performance for several datasets and activation functions, highlighting the power of scaling symmetries as an inductive bias for NN processing. The source code is publicly available at https://github.com/jkalogero/scalegmn.
Related papers
- Neural Metamorphosis [72.88137795439407]
This paper introduces a new learning paradigm termed Neural Metamorphosis (NeuMeta), which aims to build self-morphable neural networks.
NeuMeta directly learns the continuous weight manifold of neural networks.
It sustains full-size performance even at a 75% compression rate.
arXiv Detail & Related papers (2024-10-10T14:49:58Z) - Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials [3.6443770850509423]
Soft, porous mechanical metamaterials exhibit pattern transformations that may have important applications in soft robotics, sound reduction and biomedicine.
We develop a machine learning-based approach that scales favorably to serve as a surrogate model.
We show that this network is more accurate and data-efficient than graph neural networks with fewer symmetries.
arXiv Detail & Related papers (2024-04-26T12:30:32Z) - Universal Neural Functionals [67.80283995795985]
A challenging problem in many modern machine learning tasks is to process weight-space features.
Recent works have developed promising weight-space models that are equivariant to the permutation symmetries of simple feedforward networks.
This work proposes an algorithm that automatically constructs permutation equivariant models for any weight space.
arXiv Detail & Related papers (2024-02-07T20:12:27Z) - Neural Functional Transformers [99.98750156515437]
This paper uses the attention mechanism to define a novel set of permutation equivariant weight-space layers called neural functional Transformers (NFTs)
NFTs respect weight-space permutation symmetries while incorporating the advantages of attention, which have exhibited remarkable success across multiple domains.
We also leverage NFTs to develop Inr2Array, a novel method for computing permutation invariant representations from the weights of implicit neural representations (INRs)
arXiv Detail & Related papers (2023-05-22T23:38:27Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Invariant Layers for Graphs with Nodes of Different Types [27.530546740444077]
We show that implementing linear layers invariant to input permutations allows learning important node interactions more effectively than existing techniques.
Our findings suggest that function approximation on a graph with $n$ nodes can be done with tensors of sizes $leq n$, which is tighter than the best-known bound $leq n(n-1)/2$.
arXiv Detail & Related papers (2023-02-27T07:10:33Z) - Smooth Mathematical Function from Compact Neural Networks [0.0]
We get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters.
New activation function, meta-batch method, features of numerical data, meta-augmentation with meta parameters are presented.
arXiv Detail & Related papers (2022-12-31T11:33:24Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.