論文の概要: MMVR: Millimeter-wave Multi-View Radar Dataset and Benchmark for Indoor Perception
- arxiv url: http://arxiv.org/abs/2406.10708v1
- Date: Sat, 15 Jun 2024 18:35:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 23:04:22.117554
- Title: MMVR: Millimeter-wave Multi-View Radar Dataset and Benchmark for Indoor Perception
- Title(参考訳): MMVR:ミリ波マルチビューレーダデータセットと屋内知覚のためのベンチマーク
- Authors: M. Mahbubur Rahman, Ryoma Yataka, Sorachi Kato, Pu Perry Wang, Peizhao Li, Adriano Cardace, Petros Boufounos,
- Abstract要約: マルチビュー高分解能レーダヒートマップを用いた屋内レーダデータの収集を行う。
データセットは、25ドル(約2,300円)の被験者から収集された345ドル(約3,300円)のマルチビューレーダーフレームで構成されています。
我々はMMVRが屋内車両(ロボット/ヒューマノイド)航法、建築エネルギー管理、高齢者介護のための屋内レーダ認識開発を促進し、効率、ユーザエクスペリエンス、安全性の向上を期待する。
- 参考スコア(独自算出の注目度): 8.121452157103016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared with an extensive list of automotive radar datasets that support autonomous driving, indoor radar datasets are scarce at a smaller scale in the format of low-resolution radar point clouds and usually under an open-space single-room setting. In this paper, we scale up indoor radar data collection using multi-view high-resolution radar heatmap in a multi-day, multi-room, and multi-subject setting, with an emphasis on the diversity of environment and subjects. Referred to as the millimeter-wave multi-view radar (MMVR) dataset, it consists of $345$K multi-view radar frames collected from $25$ human subjects over $6$ different rooms, $446$K annotated bounding boxes/segmentation instances, and $7.59$ million annotated keypoints to support three major perception tasks of object detection, pose estimation, and instance segmentation, respectively. For each task, we report performance benchmarks under two protocols: a single subject in an open space and multiple subjects in several cluttered rooms with two data splits: random split and cross-environment split over $395$ 1-min data segments. We anticipate that MMVR facilitates indoor radar perception development for indoor vehicle (robot/humanoid) navigation, building energy management, and elderly care for better efficiency, user experience, and safety.
- Abstract(参考訳): 自律走行をサポートする自動車レーダデータセットの広範なリストと比較すると、屋内レーダデータセットは低解像度レーダポイントクラウドの形式では小さく、通常はオープンスペースの単一ルーム設定の下では不十分である。
本稿では,マルチ日,マルチルーム,マルチオブジェクト設定におけるマルチビュー高分解能レーダヒートマップを用いた屋内レーダデータ収集を,環境と対象の多様性に着目してスケールアップする。
ミリ波マルチビューレーダ(MMVR)データセットとして参照され、異なる部屋から25ドルの被験者から収集された345ドルのマルチビューレーダフレームと、446ドルの注釈付きバウンディングボックス/セグメンテーションインスタンスと、オブジェクト検出、ポーズ推定、インスタンスセグメンテーションの3つの主要な認識タスクをサポートする7.59ドルの注釈付きキーポイントで構成されている。
各タスクに対して、オープンスペースの1つの被験者と、乱数分割とクロス環境分割の2つのデータ分割を持つ複数の乱雑な部屋の複数の被験者の2つのプロトコルによるパフォーマンスベンチマークを報告する。
我々はMMVRが屋内車両(ロボット/ヒューマノイド)航法、建築エネルギー管理、高齢者介護のための屋内レーダ認識開発を促進し、効率、ユーザエクスペリエンス、安全性の向上を期待する。
関連論文リスト
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Vision meets mmWave Radar: 3D Object Perception Benchmark for Autonomous
Driving [30.456314610767667]
CRUW3Dデータセットには、66K同期カメラ、レーダー、LiDARフレームが含まれる。
この種のフォーマットは、カメラとレーダーの間の情報や特徴を融合させた後、機械学習モデルによりより信頼性の高い知覚結果が得られる。
論文 参考訳(メタデータ) (2023-11-17T01:07:37Z) - Dual Radar: A Multi-modal Dataset with Dual 4D Radar for Autonomous
Driving [22.633794566422687]
本稿では,2種類の4Dレーダを同時に捕捉した大規模マルチモーダルデータセットについて紹介する。
データセットは151連続して作成され、その大部分は20秒で、10,007の微妙な同期と注釈付きフレームを含んでいる。
我々はデータセットを実験的に検証し、異なる種類の4Dレーダーの研究に有用な結果を提供する。
論文 参考訳(メタデータ) (2023-10-11T15:41:52Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and
Camera Fusion [6.639648061168067]
マルチビューレーダーカメラで融合した3Dオブジェクト検出は、より遠くの検知範囲と自律運転に有用な機能を提供する。
現在のレーダーとカメラの融合方式は、レーダー情報をカメラデータで融合するための種類の設計を提供する。
セマンティック・アライメント・レーダ機能を実現するための新しいマルチビューレーダカメラフュージョン法であるMVFusionを提案する。
論文 参考訳(メタデータ) (2023-02-21T08:25:50Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
MMPAT(MultiModality PAnoramic Multi-object Tracking framework)を提案する。
2次元パノラマ画像と3次元点雲を入力とし、マルチモーダルデータを用いて目標軌道を推定する。
提案手法は,検出タスクと追跡タスクの両方においてMMPATが最高性能を達成するJRDBデータセット上で評価する。
論文 参考訳(メタデータ) (2021-05-31T03:16:38Z) - Multi-View Radar Semantic Segmentation [3.2093811507874768]
自動車用レーダーは、周囲の物体の特性を測定する安価なアクティブセンサーである。
レーダー生データのサイズと複雑さのため、シーン理解にはほとんど使われない。
我々は,複数の新しいアーキテクチャとそれに伴う損失を提案し,レンジアングル・ドップラーレーダテンソルの複数の"ビュー"を分析し,意味的にセグメンテーションする。
論文 参考訳(メタデータ) (2021-03-30T09:56:41Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - RSS-Net: Weakly-Supervised Multi-Class Semantic Segmentation with FMCW
Radar [26.56755178602111]
我々は、このタスクに使用される従来のセンサーよりも、より長い範囲で動作し、悪天候や照明条件に対してかなり堅牢なレーダーを提唱する。
RGBカメラやLiDARセンサーとレーダースキャンを関連付け,これまでに収集された最大の都市自治データセットを利用する。
本稿では,マルチチャンネル・レーダ・スキャン・インプットを用いて,短命でダイナミックなシーン・オブジェクトを扱うネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-02T11:40:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。