Planning with Adaptive World Models for Autonomous Driving
- URL: http://arxiv.org/abs/2406.10714v1
- Date: Sat, 15 Jun 2024 18:53:45 GMT
- Title: Planning with Adaptive World Models for Autonomous Driving
- Authors: Arun Balajee Vasudevan, Neehar Peri, Jeff Schneider, Deva Ramanan,
- Abstract summary: Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
- Score: 50.4439896514353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion planning is crucial for safe navigation in complex urban environments. Historically, motion planners (MPs) have been evaluated with procedurally-generated simulators like CARLA. However, such synthetic benchmarks do not capture real-world multi-agent interactions. nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic, effectively turning the fixed dataset into a reactive simulator. We analyze the characteristics of nuPlan's recorded logs and find that each city has its own unique driving behaviors, suggesting that robust planners must adapt to different environments. We learn to model such unique behaviors with BehaviorNet, a graph convolutional neural network (GCNN) that predicts reactive agent behaviors using features derived from recently-observed agent histories; intuitively, some aggressive agents may tailgate lead vehicles, while others may not. To model such phenomena, BehaviorNet predicts parameters of an agent's motion controller rather than predicting its spacetime trajectory (as most forecasters do). Finally, we present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions. Our extensive experiments demonstrate that AdaptiveDriver achieves state-of-the-art results on the nuPlan closed-loop planning benchmark, reducing test error from 6.4% to 4.6%, even when applied to never-before-seen cities.
Related papers
- MFTraj: Map-Free, Behavior-Driven Trajectory Prediction for Autonomous Driving [15.965681867350215]
This paper introduces a trajectory prediction model tailored for autonomous driving.
It harnesses historical trajectory data combined with a novel geometric dynamic graph-based behavior-aware module.
It achieves computational efficiency and reduced parameter overhead.
arXiv Detail & Related papers (2024-05-02T13:13:52Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
We show that we can parameterize autoregressive closed-loop models without retraining.
We propose fully reactive closed-loop planning over discrete latent modes.
Our approach also outperforms the previous state-of-the-art in CARLA on challenging dense traffic scenarios.
arXiv Detail & Related papers (2024-03-12T01:00:52Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Interactive Joint Planning for Autonomous Vehicles [19.479300967537675]
In interactive driving scenarios, the actions of one agent greatly influences those of its neighbors.
We present Interactive Joint Planning (IJP) that bridges MPC with learned prediction models.
IJP significantly outperforms the baselines that are either without joint optimization or running sampling-based planning.
arXiv Detail & Related papers (2023-10-27T17:48:25Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - A Hierarchical Pedestrian Behavior Model to Generate Realistic Human
Behavior in Traffic Simulation [11.525073205608681]
We present a hierarchical pedestrian behavior model that generates high-level decisions through the use of behavior trees.
A full implementation of our work is integrated into GeoScenario Server, a scenario definition and execution engine.
Our model is shown to replicate the real-world pedestrians' trajectories with a high degree of fidelity and a decision-making accuracy of 98% or better.
arXiv Detail & Related papers (2022-06-01T02:04:38Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.